Genistein induced by Frankliniella occidentalis feeding confers resistance to insect herbivores in peanut

Qian Wang , Xiaoran Wu , Ziwei Shi , Youlin Xia , Lifeng Liu , Yuanye Liu , Xiaobei Liu , Wenrui Liu , Xiujun Lu , Wei Guo , Dan Zhao

New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70014

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70014 DOI: 10.1002/npp2.70014
ORIGINAL PAPER

Genistein induced by Frankliniella occidentalis feeding confers resistance to insect herbivores in peanut

Author information +
History +
PDF

Abstract

The western flower thrips (Frankliniella occidentalis) is a major pest of peanuts. Cultivating and deploying resistant varieties is the most effective and economic method for F. occidentalis management. However, the resistance mechanism of peanuts to F. occidentalis infestation remains unknown. Here, the Tianfu 22 (TF22) and Jinong 5 (JN5) varieties were identified as thrips-resistant and thrips-susceptible, respectively, based on field screening carried out across two consecutive years. Metabolomic profiling showed that thrip-infested TF22 leaves exhibited differentially accumulated metabolites enriched in phenylpropanoid and secondary metabolite biosyntheses. Notably, some metabolites involved in the biosynthesis of phenylpropanoids, such as biochanin A, genistein, and 7-hydroxyflavone, were only induced in the infested TF22 leaves. External feeding and exogenous spraying confirmed that genistein reduced the pupation rate of thrips, decreasing its harm to peanuts. Furthermore, genistein significantly lowered the fecundity of Aphis craccivora and inhibited the weight gain of Helicoverpa armigera larvae. Three genes (CHS, CHI, and IFS) involved in genistein synthesis were significantly upregulated in infested TF22 plants. These results suggest that genistein is likely a pivotal resistance factor in peanuts, offering valuable insights for the cultivation and application of resistant cultivars.

Keywords

Frankliniella occidentalis / genistein / induced resistance / peanut / phenylpropanoid metabolism

Cite this article

Download citation ▾
Qian Wang, Xiaoran Wu, Ziwei Shi, Youlin Xia, Lifeng Liu, Yuanye Liu, Xiaobei Liu, Wenrui Liu, Xiujun Lu, Wei Guo, Dan Zhao. Genistein induced by Frankliniella occidentalis feeding confers resistance to insect herbivores in peanut. New Plant Protection, 2025, 2(3): e70014 DOI:10.1002/npp2.70014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lu, N., Zhang, T. T., Bao, Y. J., Lu, X. J., Guo, W., & Zhao, D. (2022). Investigation on insect community and occurrence dynamics of dominant species by yellow sticky trap method in peanut fields in Huang–Huai–Hai region. Plant Protection, 48(3), 305-311. https://doi.org/10.16688/j.zwbh.2021157

[2]

Funderburk, J. E., Gorbet, D. W., Teare, I. D., & Stavisky, J. (1998). Thrips injury can reduce peanut yield and quality under conditions of multiple stress. Agronomy Journal, 90(4), 563-566. https://doi.org/10.2134/agronj1998.00021962009000040020x

[3]

Reitz, S. R., Gao, Y., Kirk, W. D. J., Hoddle, M. S., Leiss, K. A., & Funderburk, J. E. (2020). Invasion biology, ecology, and management of western flower thrips. Annual Review of Etomology, 65(1), 17-37. https://doi.org/10.1146/annurev-ento-011019-024947

[4]

Srinivasan, R., Abney, M. R., Lai, P. C., Culbreath, A. K., Tallury, S., & Leal-Bertioli, S. C. M. (2018). Resistance to thrips in peanut and implications for management of thrips and thrips-transmitted orthotospoiruses in peanut. Frontiers in Plant Science, 9, 1604. https://doi.org/10.3389/fpls.2018.01604

[5]

Pichersky, E., Nodel, J. P., & Dudareva, N. (2006). Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science, 311(5762), 808-811. https://doi.org/10.1126/science.1118510

[6]

Jiang, N., Doseff, A. I., & Grotewold, E. (2016). Flavones: From biosynthesis to health benefits. Plants, 5(2), 27. https://doi.org/10.3390/plants5020027

[7]

Yuan, L., & Grotewold, E. (2020). Plant specialized metabolism. Plant Science, 298, 110579. https://doi.org/10.1016/j.plantsci.2020.110579

[8]

Vogt, T. (2010). Phenylpropanoid biosynthesis. Molecular Plant, 3(1), 2-20. https://doi.org/10.1093/mp/ssp106

[9]

Dong, N. Q., & Lin, H. X. (2021). Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 63(1), 180-209. https://doi.org/10.1111/jipb.13054

[10]

Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126(2), 485-493. https://doi.org/10.1104/pp.126.2.485

[11]

Dreyer, D. L., & Jones, K. C. (1981). Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: Aphid feeding deterrents in wheat. Phytochemistry, 20(11), 2489-2493. https://doi.org/10.1016/0031-9422(81)83078-6

[12]

Grayer, R. J., Harborne, J. B., Kimmins, F. M., & Wijayagunasekera, H. N. P. (1994). Phenolics in rice phloem sap as sucking deterrents to the brown planthopper, Nilaparvata lugens. Acta Horticulturae, 381(2), 691-694. https://doi.org/10.17660/ActaHortic.1994.381.100

[13]

Tyagi, S., Rathinam, M., Shashank, P. R., Chaudhary, N., Shasany, A. K., & Sreevathsa, R. (2022). Deciphering of pod borer [Helicoverpa armigera (Hübner)] resistance in Cajanus platycarpus (Benth.) offers novel insights on the reprogramming and role of flavonoid biosynthesis pathway. Toxins, 14(7), 455. https://doi.org/10.3390/toxins14070455

[14]

Yu, O., & McGonigle, B. (2005). Metabolic engineering of isoflavone biosynthesis. Advances in Agronomy, 86, 147-190. https://doi.org/10.1016/S0065-2113(05)86003-1

[15]

Bentivenha, J. P. F., Canassa, V. F., Baldin, E. L. L., Borguini, M. G., Lima, G. P. P., & Lourenção, A. (2018). Role of the rutin and genistein flavonoids in soybean resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod-Plant Interactions, 12(2), 311-320. https://doi.org/10.1007/s11829-017-9578-5

[16]

Tu, X., Liu, Z., & Zhang, Z. H. (2018). Comparative transcriptomic analysis of resistant and susceptible alfalfa cultivars (Medicago sativa L.) after thrips infestation. BMC Genomics, 19(1), 116. https://doi.org/10.1186/s12864-018-4495-2

[17]

Zhang, Z. Q., Chen, Q., Tan, Y., Shuang, S., Dai, R., Jiang, X. H., & Temuer, B. (2021). Combined transcriptome and metabolome analysis of alfalfa response to thrips infection. Genes, 12(12), 1967. https://doi.org/10.3390/genes12121967

[18]

Li, T., Feng, M. Y., Chi, Y. M., Shi, X., Sun, Z. L., Wu, Z., Li, A. M., & Shi, W. P. (2023). Defensive resistance of cowpea Vigna unguiculata control Megalurothrips usitatus mediated by jasmonic acid or insect damage. Plants, 12(4), 942. https://doi.org/10.3390/plants12040942

[19]

Leiss, K. A., Choi, Y. H., Abdel-Farid, I. B., Verpoorte, R., & Klinkhamer, P. G. L. (2009). NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids. Journal of Chemical Ecology, 35(2), 219-229. https://doi.org/10.1007/s10886-008-9586-0

[20]

Leiss, K. A., Cristofori, G., van Steenis, R., Verpoorte, R., & Klinkhamer, P. G. L. (2013). An eco-metabolomic study of host plant resistance to western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry, 93, 63-70. https://doi.org/10.1016/j.phytochem.2013.03.011

[21]

Maharijaya, A., Vosman, B., Pelgrom, K., Wahyuni, Y., de Vos, R. C. H., & Voorrips, R. E. (2019). Genetic variation in phytochemicals in leaves of pepper (Capsicum) in relation to thrips resistance. Arthropod-Plant Interactions, 13, 1-9. https://doi.org/10.1007/s11829-018-9628-7

[22]

Kandakoor, S. B., Khan, H. K., Chakravarthy, A. K., Kumar, C. T. A., & Venkataravana, P. (2014). Biochemical constituents influencing thrips resistance in groundnut germplasm. Journal of Environmental Biology, 35(4), 675-681.

[23]

Michelotto, M. D., de Godoy, I. J., Pirotta, M. Z., Santos, J. F. D., Finoto, E. L., & Fávero, A. P. (2017). Resistance to thrips (Enneothrips flavens) in wild and amphidiploid Arachis species. PLoS One, 12(5), e0176811. https://doi.org/10.1371/journal.pone.0176811

[24]

Liu, Y. J., Wang, X., Luo, S. X., Ma, L. S., Zhang, W. W., Xuan, S. X., Wang, Y. H., Zhao, J. J., Shen, S. X., Ma, W., Gu, A. X., & Chen, X. P. (2022). Metabolomic and transcriptomic analyses identify quinic acid protecting eggplant from damage caused by western flower thrips. Pest Management Science, 78(12), 5113-5123. https://doi.org/10.1002/ps.7129

[25]

Zhang, B. B., Ye, Y. Y., Hong, L., Yin, Y. L., Wang, G. Q., Jin, F. S., & Luo, S. C. (2024). Screening for the resistant varieties of Asparagus officinalis against Bemisia tabaci and the mechanism of resistance. Plant Protection, 50(1), 183-194. https://doi.org/10.16688/j.zwbh.2022768

[26]

Wang, Q., Liu, X. B., Liu, H., Fu, Y., Cheng, Y. M., Zhang, L. J., Shi, W. P., Zhang, Y., & Chen, J. L. (2022). Transcriptomic and metabolomic analysis of wheat kernels in response to the feeding of orange wheat blossom midges (Sitodiplosis mosellana) in the field. Journal of Agricultural and Food Chemistry, 70(5), 1477-1493. https://doi.org/10.1021/acs.jafc.1c06239

[27]

Wang, Q., Liu, J. T., Zhang, Y. J., Chen, J. L., Li, X. C., Liang, P., Gao, X. W., Zhou, J. J., & Gu, S. H. (2021). Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae. Insect Biochemistry and Molecular Biology, 130, 103528. https://doi.org/10.1016/j.ibmb.2021.103528

[28]

Liu, S., Su, L. C., Liu, S., Zeng, X. J., Zheng, D. M., Hong, L., & Li, L. (2016). Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: An efficient tool for functional study of genes. Biotechnology & Biotechnological Equipment, 30(5), 869-878. https://doi.org/10.1080/13102818.2016.1191972

[29]

Wang, Q., Zhou, J. J., Liu, J. T., Huang, G. Z., Xu, W. Y., Zhang, Q., Chen, J. L., Zhang, Y. J., Li, X. C., & Gu, S. H. (2019). Integrative transcriptomic and genomic analysis of odorant binding proteins and chemosensory proteins in aphids. Insect Molecular Biology, 28(1), 1-22. https://doi.org/10.1111/imb.12513

[30]

Young, S., Kinzer, R. E., Walton, R. R., & Matlock, R. S. (1972). Field screening for tobacco thrips resistance in peanuts. Journal of Economic Entomology, 65(3), 828-832. https://doi.org/10.1093/jee/65.3.828

[31]

Kinzer, D. R., Pitts, J. T., Walton, R. R., & Kirby, J. S. (1973). Thrips resistance in plant introductions and in selections made for peanut improvement in Oklahoma. Journal of Economic Entomology, 66(1), 91-95. https://doi.org/10.1093/jee/66.1.91

[32]

Amin, P. W., Singh, K. N., Dwivedi, S. L., & Rao, V. R. (1985). Sources of resistance to the Jassid (Empoasca kerri Pruthi), thrips (Frankliniella schultzei (Trybom)) and Termites (Odontotermes sp.) in groundnut (Arachis hypogaea L.). Peanut Science, 12(2), 58-60. https://doi.org/10.3146/pnut.12.2.0002

[33]

Ekvised, S., Jogloy, S., Akkasaeng, C., Keerati-kasikorn, M., Kesmala, T., Buddhasimma, I., & Patanothai, A. (2006). Field evaluation of screening procedures for thrips resistance in peanut. Asian Journal of Plant Sciences, 5(5), 838-846. https://doi.org/10.1159/000073510

[34]

Ramaroson, M. L., Koutouan, C., Helesbeux, J. J., Clerc, V. L., Hamama, L., Geoffriau, E., & Briard, M. (2022). Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules, 27(23), 8371. https://doi.org/10.3390/molecules27238371

[35]

Cheng, D. D., Kirk, H., Vrieling, K., Mulder, P. P. J., & Klinkhamer, P. G. L. (2011). The relationship between structurally different pyrrolizidine alkaloids and western flower thrips resistance in F2 hybrids of Jacobaea vulgaris and Jacobaea aquatica. Journal of Chemical Ecology, 37(10), 1071-1080. https://doi.org/10.1007/s10886-011-0021-6

[36]

Leiss, K. A., Maltese, F., Choi, Y. H., Verpoorte, R., & Klinkhamer, P. G. L. (2009). Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiology, 150(3), 1567-1575. https://doi.org/10.1104/pp.109.138131

[37]

Jung, W., Yu, O., Lau, S. M. C., O’Keefe, D. P., Odell, J., Fader, G., & McGonigle, B. (2000). Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotechnology, 18(2), 208-212. https://doi.org/10.1038/72671

[38]

Yang, X. W., Liu, T., Yang, R. W., Fan, H. Y., Liu, X. Y., Xuan, Y. H., Wang, Y., Chen, L. J., Duan, Y. X., & Zhu, X. F. (2024). Overexpression of GmPAL genes enhance soybean resistance against Heterodera lycines. Molecular Plant-Microbe Interactions, 37(4), 416-423. https://doi.org/10.1094/MPMI-09-23-0151-R

[39]

Yuan, E. L., Yan, H. Y., Gao, J., Guo, H. J., Ge, F., & Sun, Y. C. (2019). Increases in genistein in Medicago sativa confer resistance against the Pisum host race of Acyrthosiphon pisum. Insects, 10(4), 97. https://doi.org/10.3390/insects10040097

[40]

Zheng, X. B., Yuan, J. J., QianK, H., Tang, Y. X., Wang, J., Zhang, Y., Feng, J. M., Cao, H. Y., Xu, B. Y., Zhang, Y. J., Liang, P., & Wu, Q. J. (2024). Identification and RNAi-based function analysis of trehalase family genes in Frankliniella occidentalis (Pergande). Pest Management Science, 80(6), 2839-2850. https://doi.org/10.1002/ps.7992

[41]

Dudareva, N., Negre, F., Nagegowda, D. A., & Orlova, I. (2006). Plant volatiles: Recent advances and future perspectives. Critical Reviews in Plant Sciences, 25(5), 417-440. https://doi.org/10.1080/07352680600899973

[42]

Koschier, E. H., Sedy, K. A., & Novak, J. (2002). Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci. Crop Protection, 21(5), 419-425. https://doi.org/10.1016/S0261-2194(01)00124-7

[43]

Whittaker, M. S., & Kirk, W. D. J. (2004). The effects of sucrose and tannin on oviposition by the western flower thrips. Acta Phytopathologica et Entomologica Hungarica, 39(1), 115-121. https://doi.org/10.1556/APhyt.39.2004.1-3.11

[44]

Allsopp, E., Prinsloo, G. J., Smart, L. E., & Dewhirst, S. Y. (2014). Methyl salicylate, thymol and carvacrol as oviposition deterrents for Frankliniella occidentalis (Pergande) on plum blossoms. Arthropod-Plant Interactions, 8(5), 421-427. https://doi.org/10.1007/s11829-014-9323-2

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

35

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/