Identification and functional dissection of maize disease resistance genes

Hongliang Wu , Ying Ding , Haiyue Yu , Xin Xie , Cyrille Saintenac , Zhiqiang Li , Wende Liu

New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70013

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70013 DOI: 10.1002/npp2.70013
COMPREHENSIVE REVIEW

Identification and functional dissection of maize disease resistance genes

Author information +
History +
PDF

Abstract

Maize (Zea mays L.) serves as a staple food in numerous countries and is also used as a raw material for industrial products, playing a significant role in global food security and economic development. The diverse and widespread diseases affecting maize can cause significant losses, posing a serious threat to maize production. Currently, planting resistant varieties remains one of the most economical and effective strategies for disease management in maize. However, maize resistance primarily comprises multiple minor-effect loci, making the identification of resistant genes challenging. In recent years, advancements in sequencing technologies have facilitated new progress in the cloning and mechanistic analysis of maize resistance genes through methods such as resequencing and population genetic analysis. This paper reviews recent research on the cloning and functional analysis of maize resistance genes and discusses new approaches that may enhance these processes, aiming to provide references for future studies.

Keywords

genetic mapping / maize / molecular mechanism / resistance

Cite this article

Download citation ▾
Hongliang Wu, Ying Ding, Haiyue Yu, Xin Xie, Cyrille Saintenac, Zhiqiang Li, Wende Liu. Identification and functional dissection of maize disease resistance genes. New Plant Protection, 2025, 2(3): e70013 DOI:10.1002/npp2.70013

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bonavia, D. (2014). Maize: Origin, domestication, and its role in the development of culture. Canadian Journal of Archaeology / Journal Canadien d’Archéologie, 38(1), 346-348. http://www.jstor.org/stable/43967091

[2]

Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022). Global maize production, consumption and trade: Trends and R&D implications. Food Security, 14(5), 1295-1319. https://doi.org/10.1007/s12571-022-01288-7

[3]

Ranum, P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105-112. https://doi.org/10.1111/nyas.12396

[4]

De León, C. (1984). Maize diseases: A guide for field identification. CIMMYT. http://hdl.handle.net/10883/3707

[5]

Bruns, H. A. (2017). Southern corn leaf blight: A story worth retelling. Agronomy Journal, 109(4), 1218-1224. https://doi.org/10.2134/agronj2017.01.0006

[6]

Sun, Q., Li, L., Guo, F., Zhang, K., Dong, J., Luo, Y., & Ma, Z. (2021). Southern corn rust caused by Puccinia polysora underw: A review. Phytopathology Research, 3(1), 25. https://doi.org/10.1186/s42483-021-00102-0

[7]

Mueller, D. S., Wise, K. A., Sisson, A. J., Allen, T. W., Bergstrom, G. C., Bissonnette, K. M., Bradley, C. A., Byamukama, E., Chilvers, M. I., Collins, A. A., Esker, P. D., Faske, T. R., Friskop, A. J., Hagan, A. K., Heiniger, R. W., Hollier, C. A., Isakeit, T., Jackson-Ziems, T. A., Jardine, D. J., … Wiebold, W. J. (2020). Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Progress, 21(4), 238-247. https://doi.org/10.1094/php-05-20-0038-rs

[8]

Boddupalli, P., Suresh, L. M., Mwatuni, F., Beyene, Y., Makumbi, D., Gowda, M., Olsen, M., Hodson, D., Worku, M., Mezzalama, M., Molnar, T., Dhugga, K. S., Wangai, A., Gichuru, L., Angwenyi, S., Alemayehu, Y., Grønbech Hansen, J., & Lassen, P. (2020). Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa. Virus Research, 282, 197943. https://doi.org/10.1016/j.virusres.2020.197943

[9]

Marenya, P. P., Erenstein, O., Prasanna, B., Makumbi, D., Jumbo, M., & Beyene, Y. (2018). Maize lethal necrosis disease: Evaluating agronomic and genetic control strategies for Ethiopia and Kenya. Agricultural Systems, 162, 220-228. https://doi.org/10.1016/j.agsy.2018.01.016

[10]

De Groote, H., Oloo, F., Tongruksawattana, S., & Das, B. (2016). Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya. Crop Protection, 82, 30-35. https://doi.org/10.1016/j.cropro.2015.12.003

[11]

Cui, L., Zou, C., Zhang, Z., Duan, L., Huang, J., Wang, L., Xiao, W., Yang, X., Xiang, Y., Li, W., Li, X., & Zhang, H. (2023). First report of maize white spot disease caused by Pantoea ananatis in China. Plant Disease, 107(1), 210. https://doi.org/10.1094/pdis-01-22-0152-pdn

[12]

Xing, E., Fan, X., Jiang, F., & Zhang, Y. (2023). Advancements in research on prevention and control strategies for maize white spot disease. Genes, 14(11), 2061. https://doi.org/10.3390/genes14112061

[13]

Nelson, R., Wiesner-Hanks, T., Wisser, R., & Balint-Kurti, P. (2018). Navigating complexity to breed disease-resistant crops. Nature Reviews Genetics, 19(1), 21-33. https://doi.org/10.1038/nrg.2017.82

[14]

Gadag, R. N., Bhat, J. S., Mukri, G., Gogoi, R., Suby, S. B., Das, A. K., Yadav, S., Yadava, P., Nithyashree, M. L., Naidu, G. K., Yadav, S. K., & Shilpa, K. (2021). Resistance to biotic stress: Theory and applications in maize breeding. In C. Kole (Ed.), Genomic designing for biotic stress resistant cereal crops (pp. 129-175). Springer. https://doi.org/10.1007/978-3-030-75879-0_3

[15]

Wisser, R. J., Balint-Kurti, P. J., & Nelson, R. J. (2006). The genetic architecture of disease resistance in maize: A synthesis of published studies. Phytopathology, 96(2), 120-129. https://doi.org/10.1094/phyto-96-0120

[16]

Balint-Kurti, P. J., & Johal, G. S. (2009). Maize disease resistance. In J. L. Bennetzen & S. C. Hake (Eds.), Handbook of maize: Its biology. Springer. https://doi.org/10.1007/978-0-387-79418-1_12

[17]

Kou, Y., & Wang, S. (2010). Broad-spectrum and durability: Understanding of quantitative disease resistance. Current Opinion in Plant Biology, 13(2), 181-185. https://doi.org/10.1016/j.pbi.2009.12.010

[18]

Niks, R. E., Qi, X., & Marcel, T. C. (2015). Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms. Annual Review of Phytopathology, 53(1), 445-470. https://doi.org/10.1146/annurev-phyto-080614-115928

[19]

Yang, Q., Balint-Kurti, P., & Xu, M. (2017). Quantitative disease resistance: Dissection and adoption in maize. Molecular Plant, 10(3), 402-413. https://doi.org/10.1016/j.molp.2017.02.004

[20]

Corwin, J. A., & Kliebenstein, D. J. (2017). Quantitative resistance: More than just perception of a pathogen. The Plant Cell, 29(4), 655-665. https://doi.org/10.1105/tpc.16.00915

[21]

Fones, H. N., Bebber, D. P., Chaloner, T. M., Kay, W. T., Steinberg, G., & Gurr, S. J. (2020). Threats to global food security from emerging fungal and oomycete crop pathogens. Nature Food, 1(6), 332-342. https://doi.org/10.1038/s43016-020-0075-0

[22]

Kim, J. H., Castroverde, C. D. M., Huang, S., Li, C., Hilleary, R., Seroka, A., Sohrabi, R., Medina-Yerena, D., Huot, B., Wang, J., Nomura, K., Marr, S. K., Wildermuth, M. C., Chen, T., MacMicking, J. D., & He, S. Y. (2022). Increasing the resilience of plant immunity to a warming climate. Nature, 607(7918), 339-344. https://doi.org/10.1038/s41586-022-04902-y

[23]

Chaloner, T. M., Gurr, S. J., & Bebber, D. P. (2021). Plant pathogen infection risk tracks global crop yields under climate change. Nature Climate Change, 11(8), 710-715. https://doi.org/10.1038/s41558-021-01104-8

[24]

Gou, M., Balint-Kurti, P., Xu, M., & Yang, Q. (2023). Quantitative disease resistance: Multifaceted players in plant defense. Journal of Integrative Plant Biology, 65(2), 594-610. https://doi.org/10.1111/jipb.13419

[25]

Zhu, M., Tong, L., Xu, M., & Zhong, T. (2021). Genetic dissection of maize disease resistance and its applications in molecular breeding. Molecular Breeding, 41(5), 32. https://doi.org/10.1007/s11032-021-01219-y

[26]

Johal, G. S., & Briggs, S. P. (1992). Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 258(5084), 985-987. https://doi.org/10.1126/science.1359642

[27]

McCarty, D. R., & Meeley, R. B. (2009). Transposon resources for forward and reverse genetics in maize. In J. L. Bennetzen & S. Hake (Eds.), Handbook of maize: Genetics and genomics (pp. 561-584). Springer. https://doi.org/10.1007/978-0-387-77863-1_28

[28]

Alonso, J. M., & Ecker, J. R. (2006). Moving forward in reverse: Genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nature Reviews Genetics, 7(7), 524-536. https://doi.org/10.1038/nrg1893

[29]

Yang, Q., Zhang, D., & Xu, M. (2012). A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. Journal of Integrative Plant Biology, 54(4), 228-237. https://doi.org/10.1111/j.1744-7909.2012.01108.x

[30]

Wang, B., Liu, H., Liu, Z., Dong, X., Guo, J., Li, W., Chen, J., Gao, C., Zhu, Y., Zheng, X., Chen, Z., Chen, J., Song, W., Hauck, A., & Lai, J. (2018). Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biology, 18(1), 17. https://doi.org/10.1186/s12870-018-1233-5

[31]

Ji, Q. (2013). Gene identification: Forward genetics. In T. Lübberstedt & R. K. Varshney (Eds.), Diagnostics in plant breeding (pp. 41-60). Springer. https://doi.org/10.1007/978-94-007-5687-8_3

[32]

Zhou, C., Chen, C., Cao, P., Wu, S., Sun, J., Jin, D., & Wang, B. (2007). Characterization and fine mapping of RppQ, a resistance gene to southern corn rust in maize. Molecular Genetics and Genomics, 278(6), 723-728. https://doi.org/10.1007/s00438-007-0288-z

[33]

Li, R., Song, W., Wang, B., Wang, J., Zhang, D., Zhang, Q., Li, X., Wei, J., & Gao, Z. (2018). Identification of a locus conferring dominant resistance to maize rough dwarf disease in maize. Scientific Reports, 8(1), 3248. https://doi.org/10.1038/s41598-018-21677-3

[34]

Schneeberger, K., & Weigel, D. (2011). Fast-forward genetics enabled by new sequencing technologies. Trends in Plant Science, 16(5), 282-288. https://doi.org/10.1016/j.tplants.2011.02.006

[35]

Wisser, R. J., Kolkman, J. M., Patzoldt, M. E., Holland, J. B., Yu, J., Krakowsky, M., Nelson, R. J., & Balint-Kurti, P. J. (2011). Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7339-7344. https://doi.org/10.1073/pnas.1011739108

[36]

Yang, Q., He, Y., Kabahuma, M., Chaya, T., Kelly, A., Borrego, E., Bian, Y., El Kasmi, F., Yang, L., Teixeira, P., Kolkman, J., Nelson, R., Kolomiets, M., L Dangl, J., Wisser, R., Caplan, J., Li, X., Lauter, N., & Balint-Kurti, P. (2017). A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics, 49(9), 1364-1372. https://doi.org/10.1038/ng.3919

[37]

Wang, H., Hou, J., Ye, P., Hu, L., Huang, J., Dai, Z., Zhang, B., Dai, S., Que, J., Min, H., Chen, G., Wang, Y., Jiang, M., Liang, Y., Li, L., Zhang, X., & Lai, Z. (2021). A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. Molecular Plant, 14(11), 1846-1863. https://doi.org/10.1016/j.molp.2021.07.008

[38]

Dai, Z., Pi, Q., Liu, Y., Hu, L., Li, B., Zhang, B., Wang, Y., Jiang, M., Qi, X., Li, W., Gui, S., Llaca, V., Fengler, K., Thatcher, S., Li, Z., Liu, X., Fan, X., & Lai, Z. (2024). ZmWAK02 encoding an RD-WAK protein confers maize resistance against gray leaf spot. New Phytologist, 241(4), 1780-1793. https://doi.org/10.1111/nph.19465

[39]

Zhong, T., Zhu, M., Zhang, Q., Zhang, Y., Deng, S., Guo, C., Xu, L., Liu, T., Li, Y., Bi, Y., Fan, X., Balint-Kurti, P., & Xu, M. (2024). The ZmWAKL–ZmWIK–ZmBLK1–ZmRBOH4 module provides quantitative resistance to gray leaf spot in maize. Nature Genetics, 56(2), 315-326. https://doi.org/10.1038/s41588-023-01644-z

[40]

Zhu, M., Zhong, T., Xu, L., Guo, C., Zhang, X., Liu, Y., Zhang, Y., Li, Y., Xie, Z., Liu, T., Jiang, F., Fan, X., Balint-Kurti, P., & Xu, M. (2024). The ZmCPK39–ZmDi19–ZmPR10 immune module regulates quantitative resistance to multiple foliar diseases in maize. Nature Genetics, 56(12), 2815-2826. https://doi.org/10.1038/s41588-024-01968-4

[41]

Bentolila, S., Guitton, C., Bouvet, N., Sailland, A., Nykaza, S., & Freyssinet, G. (1991). Identification of an RFLP marker tightly linked to the Ht1 gene in maize. Theoretical and Applied Genetics, 82(4), 393-398. https://doi.org/10.1007/BF00588588

[42]

Welz, H. G. (1998). Genetics and epidemiology of the pathosystem Zea mays, Setosphaeria turcica. Aachen. Shaker.

[43]

Jamann, T. M., Poland, J. A., Kolkman, J. M., Smith, L. G., & Nelson, R. J. (2014). Unraveling genomic complexity at a quantitative disease resistance locus in maize. Genetics, 198(1), 333-344. https://doi.org/10.1534/genetics.114.167486

[44]

Hurni, S., Scheuermann, D., Krattinger, S. G., Kessel, B., Wicker, T., Herren, G., Fitze, M. N., Breen, J., Presterl, T., Ouzunova, M., & Keller, B. (2015). The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proceedings of the National Academy of Sciences of the United States of America, 112(28), 8780-8785. https://doi.org/10.1073/pnas.1502522112

[45]

Yang, P., Scheuermann, D., Kessel, B., Koller, T., Greenwood, J. R., Hurni, S., Herren, G., Zhou, S., Marande, W., Wicker, T., Krattinger, S. G., Ouzunova, M., & Keller, B. (2021). Alleles of a wall-associated kinase gene account for three of the major northern corn leaf blight resistance loci in maize. The Plant Journal, 106(2), 526-535. https://doi.org/10.1111/tpj.15183

[46]

Jamann, T. M., Luo, X., Morales, L., Kolkman, J. M., Chung, C. L., & Nelson, R. J. (2016). A remorin gene is implicated in quantitative disease resistance in maize. Theoretical and Applied Genetics, 129(3), 591-602. https://doi.org/10.1007/s00122-015-2650-6

[47]

Zhao, Y., Lu, X., Liu, C., Guan, H., Zhang, M., Li, Z., Cai, H., & Lai, J. (2012). Identification and fine mapping of rhm1 locus for resistance to Southern corn leaf blight in maize. Journal of Integrative Plant Biology, 54(5), 321-329. https://doi.org/10.1111/j.1744-7909.2012.01112.x

[48]

Dai, Z., Yang, Q., Chen, D., Li, B., Que, J., Hu, L., Zhang, B., Zhang, Z., Chen, K., Zhang, S., & Lai, Z. (2023). ZmAGO18b negatively regulates maize resistance against southern leaf blight. Theoretical and Applied Genetics, 136(7), 158. https://doi.org/10.1007/s00122-023-04405-y

[49]

Chen, C., Zhao, Y., Tabor, G., Nian, H., Phillips, J., Wolters, P., Yang, Q., & Balint-Kurti, P. (2023). A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight. New Phytologist, 238(3), 1182-1197. https://doi.org/10.1111/nph.18781

[50]

Li, Z., Chen, J., Liu, C., He, S., Wang, M., Wang, L., Bhadauria, V., Wang, S., Cheng, W., Liu, H., Yang, X., Xu, M., Peng, Y. L., & Zhu, W. (2024). Natural variations of maize ZmLecRK1 determine its interaction with ZmBAK1 and resistance patterns to multiple pathogens. Molecular Plant, 17(10), 1606-1623. https://doi.org/10.1016/j.molp.2024.09.006

[51]

Zuo, W., Chao, Q., Zhang, N., Ye, J., Tan, G., Li, B., Xing, Y., Zhang, B., Liu, H., Fengler, K. A., Zhao, J., Zhao, X., Chen, Y., Lai, J., Yan, J., & Xu, M. (2015). A maize wall-associated kinase confers quantitative resistance to head smut. Nature Genetics, 47(2), 151-157. https://doi.org/10.1038/ng.3170

[52]

Zhang, N., Zhang, B., Zuo, W., Xing, Y., Konlasuk, S., Tan, G., Zhang, Q., Ye, J., & Xu, M. (2017). Cytological and molecular characterization of ZmWAK-mediated head-smut resistance in maize. Molecular Plant-microbe Interactions, 30(6), 455-465. https://doi.org/10.1094/mpmi-11-16-0238-r

[53]

Deng, C., Leonard, A., Cahill, J., Lv, M., Li, Y., Thatcher, S., Li, X., Zhao, X., Du, W., Li, Z., Li, H., Llaca, V., Fengler, K., Marshall, L., Harris, C., Tabor, G., Li, Z., Tian, Z., Yang, Q., … Li, B. (2022). The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Molecular Plant, 15(5), 904-912. https://doi.org/10.1016/j.molp.2022.01.007

[54]

Chen, G., Zhang, B., Ding, J., Wang, H., Deng, C., Wang, J., Yang, Q., Pi, Q., Zhang, R., Zhai, H., Dong, J., Huang, J., Hou, J., Wu, J., Que, J., Zhang, F., Li, W., Min, H., Tabor, G., … Zhao, J. (2022). Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nature Communications, 13(1), 4392. https://doi.org/10.1038/s41467-022-32026-4

[55]

Collins, N., Drake, J., Ayliffe, M., Sun, Q., Ellis, J., Hulbert, S., & Pryor, T. (1999). Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. The Plant Cell, 11(7), 1365-1376. https://doi.org/10.1105/tpc.11.7.1365

[56]

Li, N., Lin, B., Wang, H., Li, X., Yang, F., Ding, X., Yan, J., & Chu, Z. (2019). Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nature Genetics, 51(10), 1540-1548. https://doi.org/10.1038/s41588-019-0503-y

[57]

Jung, M., Weldekidan, T., Schaff, D., Paterson, A., Tingey, S., & Hawk, J. (1994). Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theoretical and Applied Genetics, 89(4), 413-418. https://doi.org/10.1007/BF00225375

[58]

Frey, T. J., Weldekidan, T., Colbert, T., Wolters, P. J. C. C., & Hawk, J. A. (2011). Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) G.W. Wils. using near-isogenic maize hybrids. Crop Science, 51(4), 1551-1563. https://doi.org/10.2135/cropsci2010.10.0613

[59]

Broglie, K. E., Butler, K. H., ButruillE, M. G., Da silva, C. A., Frey, T. J., Hawk, J. A., Jaqueth, J. S., Jones, E. S., Multani, D. S., & Wolters, P. J. (2006). Polynucleotides and methods for making plants resistant to fungal pathogens (EP20060740467). European Patent Office. https://europepmc.org/article/PAT/EP1874935

[60]

Zhao, B. Y., Ardales, E., Brasset, E., Claflin, L. E., Leach, J. E., & Hulbert, S. H. (2004). The Rxo1/Rba1 locus of maize controls resistance reactions to pathogenic and non-host bacteria. Theoretical and Applied Genetics, 109(1), 71-79. https://doi.org/10.1007/s00122-004-1623-y

[61]

Zhao, B., Lin, X., Poland, J., Trick, H., Leach, J., & Hulbert, S. (2005). A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15383-15388. https://doi.org/10.1073/pnas.0503023102

[62]

Wang, C., Yang, Q., Wang, W., Li, Y., Guo, Y., Zhang, D., Ma, X., Song, W., Zhao, J., & Xu, M. (2017). A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytologist, 215(4), 1503-1515. https://doi.org/10.1111/nph.14688

[63]

Ye, J., Zhong, T., Zhang, D., Ma, C., Wang, L., Yao, L., Zhang, Q., Zhu, M., & Xu, M. (2019). The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Molecular Plant, 12(3), 360-373. https://doi.org/10.1016/j.molp.2018.10.005

[64]

Song, Y., Ma, P., Gao, J., Dong, C., Wang, Z., Luan, Y., Chen, J., Sun, D., Jing, P., Zhang, X., Song, W., Zhou, Z., & Wu, J. (2024). Natural variation in maize gene ZmSBR1 confers seedling resistance to Fusariumverticillioides. The Crop Journal, 12(3), 836-844. https://doi.org/10.1016/j.cj.2024.05.003

[65]

Ma, P., Liu, E., Zhang, Z., Li, T., Zhou, Z., Yao, W., Chen, J., Wu, J., Xu, Y., & Zhang, H. (2023). Genetic variation in ZmWAX2 confers maize resistance to Fusarium verticillioides. Plant Biotechnology Journal, 21(9), 1812-1826. https://doi.org/10.1111/pbi.14093

[66]

Liu, C., He, S., Chen, J., Wang, M., Li, Z., Wei, L., Chen, Y., Du, M., Liu, D., Li, C., An, C., Bhadauria, V., Lai, J., & Zhu, W. (2024). A dual-subcellular localized β-glucosidase confers pathogen and insect resistance without a yield penalty in maize. Plant Biotechnology Journal, 22(4), 1017-1032. https://doi.org/10.1111/pbi.14242

[67]

Liu, Q., Liu, H., Gong, Y., Tao, Y., Jiang, L., Zuo, W., Yang, Q., Ye, J., Lai, J., Wu, J., Lübberstedt, T., & Xu, M. (2017). An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Molecular Plant, 10(3), 483-497. https://doi.org/10.1016/j.molp.2017.02.002

[68]

Leng, P., Ji, Q., Asp, T., Frei, U. K., Ingvardsen, C. R., Xing, Y., Studer, B., Redinbaugh, M., Jones, M., Gajjar, P., Liu, S., Li, F., Pan, G., Xu, M., & Lübberstedt, T. (2017). Auxin binding protein 1 reinforces resistance to sugarcane mosaic virus in maize. Molecular Plant, 10(10), 1357-1360. https://doi.org/10.1016/j.molp.2017.07.013

[69]

Liu, Q., Deng, S., Liu, B., Tao, Y., Ai, H., Liu, J., Zhang, Y., Zhao, Y., & Xu, M. (2020). A helitron-induced RabGDIα variant causes quantitative recessive resistance to maize rough dwarf disease. Nature Communications, 11(1), 495. https://doi.org/10.1038/s41467-020-14372-3

[70]

Xu, Z., Zhou, Z., Cheng, Z., Zhou, Y., Wang, F., Li, M., Li, G., Li, W., Du, Q., Wang, K., Lu, X., Tai, Y., Chen, R., Hao, Z., Han, J., Chen, Y., Meng, Q., Kong, X., Tie, S., … Li, X. (2023). A transcription factor ZmGLK36 confers broad resistance to maize rough dwarf disease in cereal crops. Nature Plants, 9(10), 1720-1733. https://doi.org/10.1038/s41477-023-01514-w

[71]

Wani, S. H., Samantara, K., Razzaq, A., Kakani, G., & Kumar, P. (2022). Back to the wild: Mining maize (Zea mays L.) disease resistance using advanced breeding tools. Molecular Biology Reports, 49(6), 5787-5803. https://doi.org/10.1007/s11033-021-06815-x

[72]

Xiao, Y., Liu, H., Wu, L., Warburton, M., & Yan, J. (2017). Genome-wide association studies in maize: Praise and stargaze. Molecular Plant, 10(3), 359-374. https://doi.org/10.1016/j.molp.2016.12.008

[73]

Tian, T., Wang, S., Yang, S., Yang, Z., Liu, S., Wang, Y., Gao, H., Zhang, S., Yang, X., Jiang, C., & Qin, F. (2023). Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nature Genetics, 55(3), 496-506. https://doi.org/10.1038/s41588-023-01297-y

[74]

Wang, B., Lin, Z., Li, X., Zhao, Y., Zhao, B., Wu, G., Ma, X., Wang, H., Xie, Y., Li, Q., Song, G., Kong, D., Zheng, Z., Wei, H., Shen, R., Wu, H., Chen, C., Meng, Z., Wang, T., … Wang, H. (2020). Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 52(6), 565-571. https://doi.org/10.1038/s41588-020-0616-3

[75]

Yan, P., Du, Q., Chen, H., Guo, Z., Wang, Z., Tang, J., & Li, W. X. (2023). Biofortification of iron content by regulating a NAC transcription factor in maize. Science, 382(6675), 1159-1165. https://doi.org/10.1126/science.adf3256

[76]

Kump, K. L., Bradbury, P. J., Wisser, R. J., Buckler, E. S., Belcher, A. R., Oropeza-Rosas, M. A., Zwonitzer, J. C., Kresovich, S., McMullen, M. D., Ware, D., Balint-Kurti, P. J., & Holland, J. B. (2011). Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nature Genetics, 43(2), 163-168. https://doi.org/10.1038/ng.747

[77]

Browning, B. L., & Yu, Z. (2009). Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. The American Journal of Human Genetics, 85(6), 847-861. https://doi.org/10.1016/j.ajhg.2009.11.004

[78]

Kumar, V., Wijmenga, C., & Withoff, S. (2012). From genome-wide association studies to disease mechanisms: Celiac disease as a model for autoimmune diseases. Seminars in Immunopathology, 34(4), 567-580. https://doi.org/10.1007/s00281-012-0312-1

[79]

Liu, H. J., & Yan, J. (2019). Crop genome-wide association study: A harvest of biological relevance. The Plant Journal, 97(1), 8-18. https://doi.org/10.1111/tpj.14139

[80]

The International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437(7063), 1299-1320. https://doi.org/10.1038/nature04226

[81]

Yao, L., Li, Y., Ma, C., Tong, L., Du, F., & Xu, M. (2020). Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Journal of Integrative Plant Biology, 62(10), 1535-1551. https://doi.org/10.1111/jipb.12911

[82]

Zhao, Z. Q., Zhao, Y. Q., Lin, C. P., Zhao, Y. Z., Yu, Y. X., Meng, Q. L., Zeng, G. Y., Xue, J. Q., & Yang, Q. (2021). Precise evaluation of 48 maize inbred lines to major diseases. Scientia Agricultura Sinica, 54(12), 2510-2522. https://doi.org/10.3864/j.issn.0578-1752.2021.12.003

[83]

Pathi, K. M., Rink, P., Budhagatapalli, N., Betz, R., Saado, I., Hiekel, S., Becker, M., Djamei, A., & Kumlehn, J. (2020). Engineering smut resistance in maize by site-directed mutagenesis of LIPOXYGENASE 3. Frontiers in Plant Science, 11, 543895. https://doi.org/10.3389/fpls.2020.543895

[84]

Li, Y. J., Gu, J. M., Ma, S., Xu, Y., Liu, M., Zhang, C., Liu, X., & Wang, G. F. (2023). Genome editing of the susceptibility gene ZmNANMT confers multiple disease resistance without agronomic penalty in maize. Plant Biotechnology Journal, 21(8), 1525-1527. https://doi.org/10.1111/pbi.14078

[85]

Liu, M., Li, Y. J., Zhu, Y. X., Sun, Y., & Wang, G. F. (2021). Maize nicotinate N-methyltransferase interacts with the NLR protein Rp1-D21 and modulates the hypersensitive response. Molecular Plant Pathology, 22(5), 564-579. https://doi.org/10.1111/mpp.13044

[86]

Ma, Y. X., Zhou, Z. J., Cao, H. Z., Zhou, F., Si, H. L., Zang, J. P., Xing, J. H., Zhang, K., & Dong, J. G. (2022). Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance. Journal of Integrative Agriculture, 22(11), 3458-3473. https://doi.org/10.1016/j.jia.2022.12.014

[87]

Yu, H., Ruan, H., Xia, X., Chicowski, A. S., Whitham, S. A., Li, Z., Wang, G., & Liu, W. (2022). Maize FERONIA-like receptor genes are involved in the response of multiple disease resistance in maize. Molecular Plant Pathology, 23(9), 1331-1345. https://doi.org/10.1111/mpp.13232

[88]

Cao, H., Zhang, K., Li, W., Pang, X., Liu, P., Si, H., Zang, J., Xing, J., & Dong, J. (2023). ZmMYC7 directly regulates ZmERF147 to increase maize resistance to Fusarium graminearum. The Crop Journal, 11(1), 79-88. https://doi.org/10.1016/j.cj.2022.05.006

[89]

Zuo, N., Bai, W. Z., Wei, W. Q., Yuan, T. L., Zhang, D., Wang, Y. Z., & Tang, W. H. (2022). Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance. Cell Reports, 41(13), 111877. https://doi.org/10.1016/j.celrep.2022.111877

[90]

Han, X., Altegoer, F., Steinchen, W., Binnebesel, L., Schuhmacher, J., Glatter, T., Giammarinaro, P. I., Djamei, A., Rensing, S. A., Reissmann, S., Kahmann, R., & Bange, G. (2019). A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. Nature, 565(7741), 650-653. https://doi.org/10.1038/s41586-018-0857-9

[91]

Zhang, J., Jia, X., Wang, G. F., Ma, S., Wang, S., Yang, Q., Chen, X., Zhang, Y., Lyu, Y., Wang, X., Shi, J., Zhao, Y., Chen, Y., & Wu, L. (2022). Ascorbate peroxidase 1 confers resistance to southern corn leaf blight in maize. Journal of Integrative Plant Biology, 64(6), 1196-1211. https://doi.org/10.1111/jipb.13254

[92]

Wang, S., Chen, Z., Tian, L., Ding, Y., Zhang, J., Zhou, J., Liu, P., Chen, Y., & Wu, L. (2019). Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. Plant Biotechnology Journal, 17(11), 2153-2168. https://doi.org/10.1111/pbi.13129

[93]

Wang, S., Liu, W., Chen, Z., Zhang, J., Jia, X., Gou, M., Chen, X., Zhang, Y., Li, H., Chen, Y., & Wu, L. (2022). The antioxidant protein ZmPRX5 contributes resistance to maize stalk rot. The Crop Journal, 10(4), 1049-1058. https://doi.org/10.1016/j.cj.2021.12.001

[94]

Liu, X., Liu, S., Chen, X., Prasanna, B. M., Ni, Z., Li, X., He, Y., Fan, Z., & Zhou, T. (2022). Maize miR167-ARF3/30-polyamine oxidase 1 module-regulated H2O2 production confers resistance to maize chlorotic mottle virus. Plant Physiology, 189(2), 1065-1082. https://doi.org/10.1093/plphys/kiac099

[95]

van Schie, C. C., & Takken, F. L. (2014). Susceptibility genes 101: How to be a good host. Annual Review of Phytopathology, 52(1), 551-581. https://doi.org/10.1146/annurev-phyto-102313-045854

[96]

Zaidi, S. S.-e.-A., Mukhtar, M. S., & Mansoor, S. (2018). Genome editing: Targeting susceptibility genes for plant disease resistance. Trends in Biotechnology, 36(9), 898-906. https://doi.org/10.1016/j.tibtech.2018.04.005

[97]

Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947-951. https://doi.org/10.1038/nbt.2969

[98]

Wu, Q., Xu, F., Liu, L., Char, S. N., Ding, Y., Je, B. I., Schmelz, E., Yang, B., & Jackson, D. (2020). The maize heterotrimeric G protein β subunit controls shoot meristem development and immune responses. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1799-1805. https://doi.org/10.1073/pnas.1917577116

[99]

Yang, S., Li, J., Zhang, X., Zhang, Q., Huang, J., Chen, J. Q., Hartl, D. L., & Tian, D. (2013). Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18572-18577. https://doi.org/10.1073/pnas.1318211110

[100]

Bindics, J., Khan, M., Uhse, S., Kogelmann, B., Baggely, L., Reumann, D., Ingole, K. D., Stirnberg, A., Rybecky, A., Darino, M., Navarrete, F., Doehlemann, G., & Djamei, A. (2022). Many ways to TOPLESS – manipulation of plant auxin signalling by a cluster of fungal effectors. New Phytologist, 236(4), 1455-1470. https://doi.org/10.1111/nph.18315

[101]

Till, B. J., Reynolds, S. H., Greene, E. A., Codomo, C. A., Enns, L. C., Johnson, J. E., Burtner, C., Odden, A. R., Young, K., Taylor, N. E., Henikoff, J. G., Comai, L., & Henikoff, S. (2003). Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Research, 13(3), 524-530. https://doi.org/10.1101/gr.977903

[102]

Choudhary, J. R., Bhavyasree, R. K., Sheoran, S., Choudhary, M., Chandra, S., Kaswan, V., & Wani, S. H. (2023). Forward and reverse genetics in crop breeding. In A. Raina, M. R. Wani, R. A. Laskar, N. Tomlekova, & S. Khan (Eds.), Advanced crop improvement, volume 1: Theory and practice (pp. 257-275). Springer. https://doi.org/10.1007/978-3-031-28146-4_10

[103]

Aklilu, E. (2021). Review on forward and reverse genetics in plant breeding. All Life, 14(1), 127-135. https://doi.org/10.1080/26895293.2021.1888810

[104]

Deng, S., Jiang, S., Liu, B., Zhong, T., Liu, Q., Liu, J., Liu, Y., Yin, C., Sun, C., & Xu, M. (2024). ZmGDIα-hel counters the RBSDV-induced reduction of active gibberellins to alleviate maize rough dwarf virus disease. Nature Communications, 15(1), 7576. https://doi.org/10.1038/s41467-024-51726-7

[105]

Zhang, Q., Xu, Q., Zhang, N., Zhong, T., Xing, Y., Fan, Z., Yan, M., & Xu, M. (2024). A maize WAK-SnRK1α2-WRKY module regulates nutrient availability to defend against head smut disease. Molecular Plant, 17(11), 1654-1671. https://doi.org/10.1016/j.molp.2024.09.013

[106]

Liang, Y., Liu, H. J., Yan, J., & Tian, F. (2021). Natural variation in crops: Realized understanding, continuing promise. Annual Review of Plant Biology, 72(1), 357-385. https://doi.org/10.1146/annurev-arplant-080720-090632

[107]

Zuo, S., Yin, Y., Zhang, Y., Chen, Z., & Pan, X. (2006). Progress on cloning of quantitative disease resistance gene in plant and studying its possible resistance mechanism. Molecular Plant Breeding, 4(5), 603-613. https://doi.org/10.3969/j.issn.1672-416X.2006.05.002

[108]

Chen, H., Wang, S., Xing, Y., Xu, C., Hayes, P. M., & Zhang, Q. (2003). Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2544-2549. https://doi.org/10.1073/pnas.0437898100

[109]

Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., Sela, H., Fahima, T., & Dubcovsky, J. (2009). A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 323(5919), 1357-1360. https://doi.org/10.1126/science.1166289

[110]

Huard-Chauveau, C., Perchepied, L., Debieu, M., Rivas, S., Kroj, T., Kars, I., Bergelson, J., Roux, F., & Roby, D. (2013). An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLoS Genetics, 9(9), e1003766. https://doi.org/10.1371/journal.pgen.1003766

[111]

Shen, Y., & Diener, A. C. (2013). Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genetics, 9(5), e1003525. https://doi.org/10.1371/journal.pgen.1003525

[112]

Perchepied, L., Dogimont, C., & Pitrat, M. (2005). Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon. Theoretical and Applied Genetics, 111(1), 65-74. https://doi.org/10.1007/s00122-005-1991-y

[113]

Mall, T., Han, L., Tagliani, L., & Christensen, C. (2018). Transgenic crops: Status, potential, and challenges. In S. S. Gosal & S. H. Wani (Eds.), Biotechnologies of crop improvement, volume 2: Transgenic approaches (pp. 451-485). Springer. https://doi.org/10.1007/978-3-319-90650-8_16

[114]

Jiang, J., Xu, Y. C., Zhang, Z. Q., Chen, J. F., Niu, X. M., Hou, X. H., Li, X. T., Wang, L., Zhang, Y. E., Ge, S., & Guo, Y. L. (2023). Forces driving transposable element load variation during Arabidopsis range expansion. The Plant Cell, 36(4), 840-862. https://doi.org/10.1093/plcell/koad296

[115]

Kan, Q., & Li, Q. (2023). Post-transcriptional and translational regulation of plant gene expression by transposons. Current Opinion in Plant Biology, 75, 102438. https://doi.org/10.1016/j.pbi.2023.102438

[116]

Lisch, D. (2013). How important are transposons for plant evolution? Nature Reviews Genetics, 14(1), 49-61. https://doi.org/10.1038/nrg3374

[117]

SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P. S., Edwards, K. J., Lee, M., Avramova, Z., & Bennetzen, J. L. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science, 274(5288), 765-768. https://doi.org/10.1126/science.274.5288.765

[118]

Stitzer, M. C., Anderson, S. N., Springer, N. M., & Ross-Ibarra, J. (2021). The genomic ecosystem of transposable elements in maize. PLoS Genetics, 17(10), e1009768. https://doi.org/10.1371/journal.pgen.1009768

[119]

Studer, A., Zhao, Q., Ross-Ibarra, J., & Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 43(11), 1160-1163. https://doi.org/10.1038/ng.942

[120]

Sun, X., Xiang, Y., Dou, N., Zhang, H., Pei, S., Franco, A. V., Menon, M., Monier, B., Ferebee, T., Liu, T., Liu, S., Gao, Y., Wang, J., Terzaghi, W., Yan, J., Hearne, S., Li, L., Li, F., & Dai, M. (2023). The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nature Biotechnology, 41(1), 120-127. https://doi.org/10.1038/s41587-022-01470-4

[121]

Jiang, L., Lv, Y., Li, T., Zhao, H., & Zhang, T. (2015). Identification and characterization of presence/absence variation in maize genotype Mo17. Genes & Genomics, 37(6), 503-515. https://doi.org/10.1007/s13258-015-0272-7

[122]

Schmidt, M., Guerreiro, R., Baig, N., Habekuß, A., Will, T., Ruckwied, B., & Stich, B. (2024). Fine mapping a QTL for BYDV-PAV resistance in maize. Theoretical and Applied Genetics, 137(7), 163. https://doi.org/10.1007/s00122-024-04668-z

[123]

Tao, M., Chen, J., Cui, C., Xu, Y., Xu, J., Shi, Z., Yun, J., Zhang, J., Ou, G. Z., Liu, C., Chen, Y., Zhu, Z. R., Pan, R., Xu, S., Chen, X. X., Rokas, A., Zhao, Y., Wang, S., Huang, J., & Shen, X. X. (2024). Identification of a longevity gene through evolutionary rate covariation of insect mito-nuclear genomes. Nature Aging, 4(8), 1076-1088. https://doi.org/10.1038/s43587-024-00641-z

[124]

Ngou, B. P. M., Heal, R., Wyler, M., Schmid, M. W., & Jones, J. D. G. (2022). Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. Nature Plants, 8(10), 1146-1152. https://doi.org/10.1038/s41477-022-01260-5

[125]

Liu, D. (2024). Towards cultivar-oriented gene discovery for better crops. The Crop Journal, 12(3), 670-675. https://doi.org/10.1016/j.cj.2024.01.008

[126]

Dracatos, P. M., Lück, S., & Douchkov, D. K. (2023). Diversifying resistance mechanisms in cereal crops using microphenomics. Plant Phenomics, 5, 0023. https://doi.org/10.34133/plantphenomics.0023

[127]

Basavaraj, P. S., Rane, J., Prathibha, M. D., Boraiah, K. M., & Kumar, M. (2023). Advances in high-throughput phenotyping of maize (Zeamays L.) for climate resilience. In S. H. Wani, Z. A. Dar, & G. P. Singh (Eds.), Maize improvement: Current advances in yield, quality, and stress tolerance under changing climatic scenarios (pp. 259-288). Springer. https://doi.org/10.1007/978-3-031-21640-4_12

[128]

Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., Xiong, L., & Yan, J. (2020). Crop phenomics and high-throughput phenotyping: Past decades, current challenges and future perspectives. Molecular Plant, 13(2), 187-214. https://doi.org/10.1016/j.molp.2020.01.008

[129]

Wang, W., Guo, W., Le, L., Yu, J., Wu, Y., Li, D., Wang, Y., Wang, H., Lu, X., Qiao, H., Gu, X., Tian, J., Zhang, C., & Pu, L. (2023). Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Molecular Plant, 16(2), 354-373. https://doi.org/10.1016/j.molp.2022.11.016

[130]

Wu, X., Feng, H., Wu, D., Yan, S., Zhang, P., Wang, W., Zhang, J., Ye, J., Dai, G., Fan, Y., Li, W., Song, B., Geng, Z., Yang, W., Chen, G., Qin, F., Terzaghi, W., Stitzer, M., Li, L., … Dai, M. (2021). Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biology, 22(1), 185. https://doi.org/10.1186/s13059-021-02377-0

[131]

Nan, F., Song, Y., Yu, X., Nie, C., Liu, Y., Bai, Y., Zou, D., Wang, C., Yin, D., Yang, W., & Jin, X. (2023). A novel method for maize leaf disease classification using the RGB-D post-segmentation image data. Frontiers in Plant Science, 14, 1268015. https://doi.org/10.3389/fpls.2023.1268015

[132]

Woodhouse, M. R., Cannon, E. K., Portwood, J. L., Harper, L. C., Gardiner, J. M., Schaeffer, M. L., & Andorf, C. M. (2021). A pan-genomic approach to genome databases using maize as a model system. BMC Plant Biology, 21(1), 385. https://doi.org/10.1186/s12870-021-03173-5

[133]

Gui, S., Yang, L., Li, J., Luo, J., Xu, X., Yuan, J., Chen, L., Li, W., Yang, X., Wu, S., Li, S., Wang, Y., Zhu, Y., Gao, Q., Yang, N., & Yan, J. (2020). ZEAMAP, a comprehensive database adapted to the maize multi-omics era. iScience, 23(6), 101241. https://doi.org/10.1016/j.isci.2020.101241

[134]

Mutka, A. M., & Bart, R. S. (2015). Image-based phenotyping of plant disease symptoms. Frontiers in Plant Science, 5, 734. https://doi.org/10.3389/fpls.2014.00734

[135]

Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983-3998. https://doi.org/10.1093/jxb/ert208

[136]

Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., & Herppich, W. B. (2011). Early detection of Fusarium infection in wheat using hyper-spectral imaging. Computers and Electronics in Agriculture, 75(2), 304-312. https://doi.org/10.1016/j.compag.2010.12.006

[137]

Sun, S., Wang, X., Wang, K., & Cui, X. (2020). Dissection of complex traits of tomato in the post-genome era. Theoretical and Applied Genetics, 133(5), 1763-1776. https://doi.org/10.1007/s00122-019-03478-y

[138]

Ugochukwu, A. I., & Phillips, P. W. B. (2022). Data sharing in plant phenotyping research: Perceptions, practices, enablers, barriers and implications for science policy on data management. The Plant Phenome Journal, 5(1), e20056. https://doi.org/10.1002/ppj2.20056

[139]

Xiong, Z., Gao, X., Chen, Y., Feng, Z., Pan, S., Lu, H., Uitterlinden, A. G., Nijsten, T., Ikram, A., Rivadeneira, F., Ghanbari, M., Wang, Y., Kayser, M., & Liu, F. (2022). Combining genome-wide association studies highlight novel loci involved in human facial variation. Nature Communications, 13(1), 7832. https://doi.org/10.1038/s41467-022-35328-9

[140]

Bolormaa, S., Pryce, J. E., Reverter, A., Zhang, Y., Barendse, W., Kemper, K., Tier, B., Savin, K., Hayes, B. J., & Goddard, M. E. (2014). A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genetics, 10(3), e1004198. https://doi.org/10.1371/journal.pgen.1004198

[141]

Zhao, J., Sauvage, C., Zhao, J., Bitton, F., Bauchet, G., Liu, D., Huang, S., Tieman, D. M., Klee, H. J., & Causse, M. (2019). Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nature Communications, 10(1), 1534. https://doi.org/10.1038/s41467-019-09462-w

[142]

Zhang, Y., Gu, S., Du, J., Huang, G., Shi, J., Lu, X., Wang, J., Yang, W., Guo, X., & Zhao, C. (2024). Plant microphenotype: From innovative imaging to computational analysis. Plant Biotechnology Journal, 22(4), 802-818. https://doi.org/10.1111/pbi.14244

[143]

Rahaman, M. M., Chen, D., Gillani, Z., Klukas, C., & Chen, M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Frontiers in Plant Science, 6, 619. https://doi.org/10.3389/fpls.2015.00619

[144]

Chen, G., Xiao, Y., Dai, S., Dai, Z., Wang, X., Li, B., Jaqueth, J. S., Li, W., Lai, Z., Ding, J., & Yan, J. (2023). Genetic basis of resistance to southern corn leaf blight in the maize multi-parent population and diversity panel. Plant Biotechnology Journal, 21(3), 506-520. https://doi.org/10.1111/pbi.13967

[145]

Wen, W., Li, D., Li, X., Gao, Y., Li, W., Li, H., Liu, J., Liu, H., Chen, W., Luo, J., & Yan, J. (2014). Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Communications, 5(1), 3438. https://doi.org/10.1038/ncomms4438

[146]

Jiang, H., Shi, Y., Liu, J., Li, Z., Fu, D., Wu, S., Li, M., Yang, Z., Shi, Y., Lai, J., Yang, X., Gong, Z., Hua, J., & Yang, S. (2022). Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nature Plants, 8(10), 1176-1190. https://doi.org/10.1038/s41477-022-01254-3

[147]

Li, J., Chen, M., Fan, T., Mu, X., Gao, J., Wang, Y., Jing, T., Shi, C., Niu, H., Zhen, S., Fu, J., Zheng, J., Wang, G., Tang, J., & Gou, M. (2022). Underlying mechanism of accelerated cell death and multiple disease resistance in a maize lethal leaf spot 1 allele. Journal of Experimental Botany, 73(12), 3991-4007. https://doi.org/10.1093/jxb/erac116

[148]

Han, L., Zhong, W., Qian, J., Jin, M., Tian, P., Zhu, W., Zhang, H., Sun, Y., Feng, J. W., Liu, X., Chen, G., Farid, B., Li, R., Xiong, Z., Tian, Z., Li, J., Luo, Z., Du, D., Chen, S., … Li, L. (2023). A multi-omics integrative network map of maize. Nature Genetics, 55(1), 144-153. https://doi.org/10.1038/s41588-022-01262-1

[149]

Li, X., Li, L., & Yan, J. (2015). Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize. Nature Communications, 6(1), 6648. https://doi.org/10.1038/ncomms7648

[150]

Ortiz-Ramírez, C., Guillotin, B., Xu, X., Rahni, R., Zhang, S., Yan, Z., Coqueiro Dias Araujo, P., Demesa-Arevalo, E., Lee, L., Van Eck, J., Gingeras, T. R., Jackson, D., Gallagher, K. L., & Birnbaum, K. D. (2021). Ground tissue circuitry regulates organ complexity in maize and setaria. Science, 374(6572), 1247-1252. https://doi.org/10.1126/science.abj2327

[151]

Nelms, B., & Walbot, V. (2019). Defining the developmental program leading to meiosis in maize. Science, 364(6435), 52-56. https://doi.org/10.1126/science.aav6428

[152]

Cao, Y., Ma, J., Han, S., Hou, M., Wei, X., Zhang, X., Zhang, Z. J., Sun, S., Ku, L., Tang, J., Dong, Z., Zhu, Z., Wang, X., Zhou, X., Zhang, L., Li, X., Long, Y., Wan, X., & Duan, C. (2023). Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnology Journal, 21(9), 1839-1859. https://doi.org/10.1111/pbi.14097

[153]

Yan, X. C., Liu, Q., Yang, Q., Wang, K. L., Zhai, X. Z., Kou, M. Y., Liu, J. L., Li, S. T., Deng, S. H., Li, M. M., & Duan, H. J. (2025). Single-cell transcriptomic profiling of maize cell heterogeneity and systemic immune responses against Puccinia polysora Underw. Plant Biotechnology Journal, 23(2), 549-563. https://doi.org/10.1111/pbi.14519

[154]

Feng, W., Gao, P., & Wang, X. (2024). AI breeder: Genomic predictions for crop breeding. New Crops, 1, 100010. https://doi.org/10.1016/j.ncrops.2023.12.005

[155]

Xu, Y., Zhang, X., Li, H., Zheng, H., Zhang, J., Olsen, M. S., Varshney, R. K., Prasanna, B. M., & Qian, Q. (2022). Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Molecular Plant, 15(11), 1664-1695. https://doi.org/10.1016/j.molp.2022.09.001

[156]

Yan, J., Xu, Y., Cheng, Q., Jiang, S., Wang, Q., Xiao, Y., Ma, C., Yan, J., & Wang, X. (2021). LightGBM: Accelerated genomically designed crop breeding through ensemble learning. Genome Biology, 22(1), 271. https://doi.org/10.1186/s13059-021-02492-y

[157]

Wang, K., Abid, M. A., Rasheed, A., Crossa, J., Hearne, S., & Li, H. (2023). DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Molecular Plant, 16(1), 279-293. https://doi.org/10.1016/j.molp.2022.11.004

[158]

Li, H., Li, X., Zhang, P., Feng, Y., Mi, J., Gao, S., Sheng, L., Ali, M., Yang, Z., Li, L., Fang, W., Wang, W., Qian, Q., Gu, F., & Zhou, W. (2024). Smart breeding platform: A web-based tool for high-throughput population genetics, phenomics, and genomic selection. Molecular Plant, 17(5), 677-681. https://doi.org/10.1016/j.molp.2024.03.002

[159]

Wang, Y., Pruitt, R. N., Nürnberger, T., & Wang, Y. (2022). Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology, 20(8), 449-464. https://doi.org/10.1038/s41579-022-00710-3

[160]

Ali, S., Tyagi, A., & Bae, H. (2023). Plant microbiome: An ocean of possibilities for improving disease resistance in plants. Microorganisms, 11(2), 392. https://doi.org/10.3390/microorganisms11020392

[161]

Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., Buckler, E. S., & Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6548-6553. https://doi.org/10.1073/pnas.1302837110

[162]

Walters, W. A., Jin, Z., Youngblut, N., Wallace, J. G., Sutter, J., Zhang, W., González-Peña, A., Peiffer, J., Koren, O., Shi, Q., Knight, R., Glavina Del Rio, T., Tringe, S. G., Buckler, E. S., Dangl, J. L., & Ley, R. E. (2018). Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proceedings of the National Academy of Sciences of the United States of America, 115(28), 7368-7373. https://doi.org/10.1073/pnas.1800918115

[163]

Favela, A., Bohn, M. O., & D. Kent, A. (2021). Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. The ISME Journal, 15(8), 2454-2464. https://doi.org/10.1038/s41396-021-00923-z

[164]

Zhang, L., Zhang, M., Huang, S., Li, L., Gao, Q., Wang, Y., Zhang, S., Huang, S., Yuan, L., Wen, Y., Liu, K., Yu, X., Li, D., Zhang, L., Xu, X., Wei, H., He, P., Zhou, W., Philippot, L., & Ai, C. (2022). A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications, 13(1), 3361. https://doi.org/10.1038/s41467-022-31113-w

[165]

Dlamini, S. P., Akanmu, A. O., Fadiji, A. E., & Babalola, O. O. (2023). Maize rhizosphere modulates the microbiome diversity and community structure to enhance plant health. Saudi Journal of Biological Sciences, 30(1), 103499. https://doi.org/10.1016/j.sjbs.2022.103499

[166]

Kudjordjie, E. N., Sapkota, R., Steffensen, S. K., Fomsgaard, I. S., & Nicolaisen, M. (2019). Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome, 7(1), 59. https://doi.org/10.1186/s40168-019-0677-7

[167]

Xia, X., Wei, Q., Wu, H., Chen, X., Xiao, C., Ye, Y., Liu, C., Yu, H., Guo, Y., Sun, W., & Liu, W. (2024). Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot. Microbiome, 12(1), 156. https://doi.org/10.1186/s40168-024-01887-w

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/