The effect of N-oxide phenazine producer Lysobacter antibioticus on bacterial leaf streak in rice and the rhizosphere microbial community

Junjing Chen , Xinyi Cheng , Gaoge Xu , Yancun Zhao , Fengquan Liu , Yangyang Zhao

New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70010

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (3) : e70010 DOI: 10.1002/npp2.70010
ORIGINAL PAPER

The effect of N-oxide phenazine producer Lysobacter antibioticus on bacterial leaf streak in rice and the rhizosphere microbial community

Author information +
History +
PDF

Abstract

Bacterial leaf streak (BLS) of rice, caused by Xanthomonas oryzae pv. oryzicola, severely compromises crop yield and grain quality. This study evaluates the biocontrol potential of Lysobacter antibioticus OH13, a soil bacterium producing the N-oxide phenazine antibiotic myxin, against BLS. Under greenhouse conditions, the OH13 strain, its cell-free supernatant, and purified myxin significantly reduced lesion lengths in infected rice plants. Field trials demonstrated that myxin (20 mg/L) achieved a disease control efficacy of 77.41%, comparable to the chemical agent 30% zinc thiazole, whereas OH13 itself exhibited an efficacy of 65.26%. Rhizosphere microbiome analysis revealed that OH13 reshaped the bacterial community composition, enriching taxa, such as Myxococcia and Actinomycetota, suggesting a dual mechanism that combines direct antimicrobial activity and microbiome-mediated suppression. To enhance myxin production, we employed a combinatorial strategy that integrates atmospheric and room temperature plasma mutagenesis, targeted genetic engineering, and medium optimization, achieving a final myxin yield of 3.19 times the initial level. These findings highlight the potential of L. antibioticus OH13 and myxin production as a sustainable and multifunctional alternative for BLS management.

Keywords

bacterial leaf streak / biocontrol / Lysobacter antibioticus / phenazine / rhizosphere bacterial community

Cite this article

Download citation ▾
Junjing Chen, Xinyi Cheng, Gaoge Xu, Yancun Zhao, Fengquan Liu, Yangyang Zhao. The effect of N-oxide phenazine producer Lysobacter antibioticus on bacterial leaf streak in rice and the rhizosphere microbial community. New Plant Protection, 2025, 2(3): e70010 DOI:10.1002/npp2.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

[2]

Jiang, N., Yan, J., Liang, Y., Shi, Y., He, Z., Wu, Y., Zeng, Q., Liu, X., & Peng, J. (2020). Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)–An updated review. Rice (New York, N.Y.), 13(1), 3. https://doi.org/10.1186/s12284-019-0358-y

[3]

Liu, W., Liu, J., Triplett, L., Leach, J. E., & Wang, G. L. (2014). Novel insights into rice innate immunity against bacterial and fungal pathogens. Annual Review of Phytopathology, 52(1), 213-241. https://doi.org/10.1146/annurev-phyto-102313-045926

[4]

Liu, Z., Zhu, Y., Shi, H., Qiu, J., Ding, X., & Kou, Y. (2021). Recent progress in rice broad-spectrum disease resistance. International Journal of Molecular Sciences, 22(21), 11658. https://doi.org/10.3390/ijms222111658

[5]

Zhang, R., Liu, Y., Luo, C., Wang, X., Liu, Y., Qiao, J., Yu, J., & Chen, Z. (2012). Bacillus amyloliquefaciens Lx-11, a potential biocontrol agent against rice bacterial leaf streak. Journal of Plant Pathology, 94(3), 609-619. http://www.jstor.org/stable/45156288

[6]

Yang, R., Shi, Q., Huang, T., Yan, Y., Li, S., Fang, Y., Li, Y., Liu, L., Liu, L., Wang, X., Peng, Y., Fan, J., Zou, L., Lin, S., & Chen, G. (2023). The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens. Nature Communications, 14(1), 734. https://doi.org/10.1038/s41467-023-36433-z

[7]

Panthee, S., Hamamoto, H., Paudel, A., & Sekimizu, K. (2016). Lysobacter species: A potential source of novel antibiotics. Archives of Microbiology, 198(9), 839-845. https://doi.org/10.1007/s00203-016-1278-5

[8]

Puopolo, G., Tomada, S., & Pertot, I. (2018). The impact of the omics era on the knowledge and use of Lysobacter species to control phytopathogenic micro-organisms. Journal of Applied Microbiology, 124(1), 15-27. https://doi.org/10.1111/jam.13607

[9]

Yue, H., Miller, A. L., Khetrapal, V., Jayaseker, V., Wright, S., & Du, L. (2022). Biosynthesis, regulation, and engineering of natural products from Lysobacter. Natural Product Reports, 39(4), 842-874. https://doi.org/10.1039/d1np00063b

[10]

Ji, G., Wei, L., He, Y., Wu, Y., & Bai, X. (2008). Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biological Control, 45(3), 288-296. https://doi.org/10.1016/j.biocontrol.2008.01.004

[11]

Zhao, Y., Qian, G., Ye, Y., Wright, S., Chen, H., Shen, Y., Liu, F., & Du, L. (2016). Heterocyclic aromatic N-oxidation in the biosynthesis of phenazine antibiotics from Lysobacter antibioticus. Organic Letters, 18(10), 2495-2498. https://doi.org/10.1021/acs.orglett.6b01089

[12]

Zhao, Y., Jiang, T., Xu, H., Xu, G., Qian, G., & Liu, F. (2021). Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose. Microbiological Research, 242, 126624. https://doi.org/10.1016/j.micres.2020.126624

[13]

Liu, J., Zhao, Y., Fu, Z., & Liu, F. (2021). Monooxygenase LaPhzX is involved in self-resistance mechanisms during the biosynthesis of N-oxide phenazine myxin. Journal of Agricultural and Food Chemistry, 69(45), 13524-13532. https://doi.org/10.1021/acs.jafc.1c05206

[14]

Zhao, Y., Liu, J., Jiang, T., Hou, R., Xu, G., Xu, H., & Liu, F. (2021). Resistance-nodulation-division efflux pump, LexABC, contributes to self-resistance of the phenazine di-N-oxide natural product myxin in Lysobacter antibioticus. Frontiers in Microbiology, 12, 618513. https://doi.org/10.3389/fmicb.2021.618513

[15]

Zhao, Y., Xu, G., Xu, Z., Guo, B., & Liu, F. (2023). LexR positively regulates the LexABC efflux pump involved in self-resistance to the antimicrobial di-N-oxide phenazine in Lysobacter antibioticus. Microbiology Spectrum, 11(3), e0487222. https://doi.org/10.1128/spectrum.04872-22

[16]

Guttenberger, N., Blankenfeldt, W., & Breinbauer, R. (2017). Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorganic & Medicinal Chemistry, 25(22), 6149-6166. https://doi.org/10.1016/j.bmc.2017.01.002

[17]

Huang, W., Wan, Y., Zhang, S., Wang, C., Zhang, Z., Su, H., Xiong, P., & Hou, F. (2024). Recent advances in phenazine natural products: Chemical structures and biological activities. Molecules, 29(19), 4771. https://doi.org/10.3390/molecules29194771

[18]

Perry, E. K., & Newman, D. K. (2019). The transcription factors ActR and SoxR differentially affect the phenazine tolerance of Agrobacterium tumefaciens. Molecular Microbiology, 112(1), 199-218. https://doi.org/10.1111/mmi.14263

[19]

Dar, D., Thomashow, L. S., Weller, D. M., & Newman, D. K. (2020). Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. eLife, 9, e59726. https://doi.org/10.7554/eLife.59726

[20]

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303

[21]

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60

[22]

Zhao, Y., Cheng, C., Jiang, T., Xu, H., Chen, Y., Ma, Z., Qian, G., & Liu, F. (2019). Control of wheat Fusarium head blight by heat-stable antifungal factor (HSAF) from Lysobacter enzymogenes. Plant Disease, 103(6), 1286-1292. https://doi.org/10.1094/PDIS-09-18-1517-RE

[23]

Xu, S., Pan, X., Luo, J., Wu, J., Zhou, Z., Liang, X., He, Y., & Zhou, M. (2015). Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae. Pesticide Biochemistry and Physiology, 117, 39-46. https://doi.org/10.1016/j.pestbp.2014.10.006

[24]

Xu, Y. (2013). Microbial phenazines. In S. Chincholkar & L. Thomashow (Eds.), Genomic features and regulation of phenazine biosynthesis in the rhizosphere strain Pseudomonas aeruginosa M18 (pp. 177-198). Springer. https://doi.org/10.1007/978-3-642-40573-0_9

[25]

Mfuh, A. M., & Larionov, O. V. (2015). Heterocyclic N-oxides - An emerging class of therapeutic agents. Current Medicinal Chemistry, 22(24), 2819-2857. https://doi.org/10.2174/0929867322666150619104007

[26]

Liu, Q., Yang, J., Ahmed, W., Wan, X., Wei, L., & Ji, G. (2022). Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola. Journal of Microbiology, 60(5), 496-510. https://doi.org/10.1007/s12275-022-1542-0

[27]

Chowdhury, G., Sarkar, U., Pullen, S., Wilson, W. R., Rajapakse, A., Fuchs-Knotts, T., & Gates, K. S. (2012). DNA strand cleavage by the phenazine di-N-oxide natural product myxin under both aerobic and anaerobic conditions. Chemical Research in Toxicology, 25(1), 197-206. https://doi.org/10.1021/tx2004213

[28]

Saggu, S. K., Nath, A., & Kumar, S. (2023). Myxobacteria: Biology and bioactive secondary metabolites. Research in Microbiology, 174(7), 104079. https://doi.org/10.1016/j.resmic.2023.104079

[29]

De Simeis, D., & Serra, S. (2021). Actinomycetes: A never-ending source of bioactive compounds-an overview on antibiotics production. Antibiotics (Basel, Switzerland), 10(5), 483. https://doi.org/10.3390/antibiotics10050483

[30]

Bejarano, A., Perazzolli, M., Pertot, I., & Puopolo, G. (2021). The perception of rhizosphere bacterial communication signals leads to transcriptome reprogramming in Lysobacter capsici AZ78, a plant beneficial bacterium. Frontiers in Microbiology, 12, 725403. https://doi.org/10.3389/fmicb.2021.725403

[31]

Liu, Y., Zhang, H., Wang, J., Gao, W., Sun, X., Xiong, Q., Shu, X., Miao, Y., Shen, Q., Xun, W., & Zhang, R. (2024). Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome. Nature Communications, 15(1), 1907. https://doi.org/10.1038/s41467-024-46254-3

[32]

Phillips, D., Fox, T., King, M., Bhuvaneswari, T., & Teuber, L. (2004). Microbial products trigger amino acid exudation from plant roots. Plant Physiology, 136(1), 2887-2894. https://doi.org/10.1104/pp.104.044222

[33]

Singh, K., Chandra, R., & Purchase, D. (2022). Unraveling the secrets of rhizobacteria signaling in rhizosphere. Rhizosphere, 21, 100484. https://doi.org/10.1016/j.rhisph.2022.100484

[34]

Deng, R., Li, H., Meng, F., Jia, D., Wang, W., Hu, H., & Zhang, X. (2023). Enhanced biosynthesis of phenazine-1,6-dicarboxylic acid in Streptomyces coelicolor. ACS Sustainable Chemistry & Engineering, 11(50), 17662-17674. https://doi.org/10.1021/acssuschemeng.3c04768

[35]

Hashemi, S., Laitinen, R., & Nikoloski, Z. (2024). Models and molecular mechanisms for trade-offs in the context of metabolism. Molecular Ecology, 33(10), e16879. https://doi.org/10.1111/mec.16879

[36]

Wu, Q., Wang, B., Shen, X., Shen, D., Wang, B., Guo, Q., Li, T., Shao, X., & Qian, G. (2021). Unlocking the bacterial contact-dependent antibacterial activity to engineer a biocontrol alliance of two species from natural incompatibility to artificial compatibility. Stress Biology, 1(1), 19. https://doi.org/10.1007/s44154-021-00018-x

[37]

McRose, D. L., Li, J., & Newman, D. K. (2023). The chemical ecology of coumarins and phenazines affects iron acquisition by pseudomonads. Proceedings of the National Academy of Sciences of the United States of America, 120(14), e2217951120. https://doi.org/10.1073/pnas.2217951120

[38]

McRose, D. L., & Newman, D. K. (2021). Redox-active antibiotics enhance phosphorus bioavailability. Science (New York, N.Y.), 371(6533), 1033-1037. https://doi.org/10.1126/science.abd1515

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/