Melatonin signaling promotes resistance to rice sheath blight

Chunyan Huang , Qiong Mei , Yuanhu Xuan

New Plant Protection ›› 2025, Vol. 2 ›› Issue (2) : e70007

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (2) :e70007 DOI: 10.1002/npp2.70007
ORIGINAL PAPER

Melatonin signaling promotes resistance to rice sheath blight

Author information +
History +
PDF

Abstract

Rice sheath blight (ShB), caused by Rhizoctonia solani (R. solani) Kühn, is a significant disease that severely affects rice yield. Previous studies have indicated that melatonin significantly enhances plant resistance to various stressors, whereas its role in regulating ShB resistance remains unexplored. This study revealed that melatonin synthesis genes in rice were induced by R. solani infection. Genetic analysis revealed that overexpression of the melatonin biosynthetic gene SNAT1, encoding 5-hydroxytryptamine-N-acetyltransferase, led to high melatonin accumulation and enhanced rice resistance to ShB. Conversely, SNAT1/SNAT2 double-RNAi plants exhibited significantly reduced melatonin levels and increased susceptibility to ShB. Notably, exogenous melatonin treatment promoted rice resistance to ShB, and high melatonin concentrations inhibited the hyphal growth in R. solani. Furthermore, yeast one-hybrid screening identified the brassinosteroid signaling transcription factor brassinazole-resistant 1 (BZR1) as a direct activator of SNAT1 and SNAT2. Melatonin content was higher in the bzr1-D gain-of-function BZR1 mutant and lower in BZR1-RNAi plants than in wild-type controls. In addition, the bzr1-D mutant demonstrated increased rice resistance to ShB. These findings suggest that melatonin biosynthesis is upregulated in rice following R. solani infection, thereby improving resistance, and that BZR1 acts as a positive regulator to enhance melatonin biosynthesis and ShB resistance.

Keywords

BZR1 / melatonin / rice sheath blight / SNAT / transcriptional regulation

Cite this article

Download citation ▾
Chunyan Huang, Qiong Mei, Yuanhu Xuan. Melatonin signaling promotes resistance to rice sheath blight. New Plant Protection, 2025, 2(2): e70007 DOI:10.1002/npp2.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng, A., Lin, R., Zhang, D., Qin, P., Xu, L., Ai, P., Ding, L., Wang, Y., Chen, Y., Liu, Y., Sun, Z., Feng, H., Liang, X., Fu, R., Tang, C., Li, Q., Zhang, J., Xie, Z., Deng, Q., … Li, P. (2013). The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications, 4(1), 1424. https://doi.org/10.1038/ncomms2427

[2]

Singh, P., Mazumdar, P., Harikrishna, J. A., & Babu, S. (2019). Sheath blight of rice: A review and identification of priorities for future research. Planta, 250(5), 1387-1407. https://doi.org/10.1007/s00425-019-03246-8

[3]

Ahmadi, N., Audebert, A., Bennett, M. J., Bishopp, A., de Oliveira, A. C., Courtois, B., Diedhiou, A., Diévart, A., Gantet, P., Ghesquière, A., Guiderdoni, E., Henry, A., Inukai, Y., Kochian, L., Laplaze, L., Lucas, M., Luu, D. T., Manneh, B., Mo, X., … Xu, J. (2014). The roots of future rice harvests. Rice, 7(1), 29. https://doi.org/10.1186/s12284-014-0029-y

[4]

Anderson, J. P., Kidd, B. N., Garg, G., & Singh, K. B. (2018). Transcriptome analysis reveals class IX ethylene response factors show specific up-regulation in resistant but not susceptible Medicago truncatula lines following infection with Rhizoctonia solani. European Journal of Plant Pathology, 152(2), 549-554. https://doi.org/10.1007/s10658-018-1492-x

[5]

Kouzai, Y., Kimura, M., Watanabe, M., Kusunoki, K., Osaka, D., Suzuki, T., Matsui, H., Yamamoto, M., Ichinose, Y., Toyoda, K., Matsuura, T., Mori, I. C., Hirayama, T., Minami, E., Nishizawa, Y., Inoue, K., Onda, Y., Mochida, K., & Noutoshi, Y. (2018). Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon. New Phytologist, 217(2), 771-783. https://doi.org/10.1111/nph.14849

[6]

Taheri, P., & Tarighi, S. (2010). Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology, 167(3), 201-208. https://doi.org/10.1016/j.jplph.2009.08.003

[7]

Yuan, D. P., Zhang, C., Wang, Z. Y., Zhu, X. F., & Xuan, Y. H. (2018). RAVL1 activates brassinosteroids and ethylene signaling to modulate response to sheath blight disease in rice. Phytopathology, 108(9), 1104-1113. https://doi.org/10.1094/phyto-03-18-0085-r

[8]

Arnao, M. B., & Hernández-Ruiz, J. (2020). Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction, 33(2), 77-87. https://doi.org/10.1007/s00497-020-00388-8

[9]

Fan, J., Xie, Y., Zhang, Z., & Chen, L. (2018). Melatonin: A multifunctional factor in plants. International Journal of Molecular Sciences, 19(5), 1528. https://doi.org/10.3390/ijms19051528

[10]

Imran, M., Latif Khan, A., Shahzad, R., Aaqil Khan, M., Bilal, S., Khan, A., Kang, S. M., & Lee, I. J. (2021). Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB PLANTS, 13(4). https://doi.org/10.1093/aobpla/plab026

[11]

Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55. https://doi.org/10.1016/j.postharvbio.2018.01.016

[12]

Sun, C., Liu, L., Wang, L., Li, B., Jin, C., & Lin, X. (2021). Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology, 63(1), 126-145. https://doi.org/10.1111/jipb.12993

[13]

Wang, M., Zhang, S., & Ding, F. (2020). Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants. Antioxidants, 9(3), 218. https://doi.org/10.3390/antiox9030218

[14]

Zahedi, S. M., Hosseini, M. S., Fahadi Hoveizeh, N., Gholami, R., Abdelrahman, M., & Tran, L. S. P. (2021). Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. Physiologia Plantarum, 173(4), 1682-1694. https://doi.org/10.1111/ppl.13589

[15]

Shi, H., Chen, Y., Tan, D.-X., Reiter, R. J., Chan, Z., & He, C. (2015). Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. Journal of Pineal Research, 59(1), 102-108. https://doi.org/10.1111/jpi.12244

[16]

Arnao, M. B., & Hernández-Ruiz, J. (2015). Functions of melatonin in plants: A review. Journal of Pineal Research, 59(2), 133-150. https://doi.org/10.1111/jpi.12253

[17]

Chen, X., Laborda, P., & Liu, F. (2020). Exogenous melatonin enhances rice plant resistance against Xanthomonas oryzae pv. oryzae. Plant Disease, 104(6), 1701-1708. https://doi.org/10.1094/pdis-11-19-2361-re

[18]

Lu, R., Liu, Z., Shao, Y., Sun, F., Zhang, Y., Cui, J., Zhou, Y., Shen, W., & Zhou, T. (2019). Melatonin is responsible for rice resistance to rice stripe virus infection through a nitric oxide-dependent pathway. Virology Journal, 16(1), 141. https://doi.org/10.1186/s12985-019-1228-3

[19]

Yuan, H., Qian, J., Wang, C., Shi, W., Chang, H., Yin, H., Xiao, Y., Wang, Y., & Li, Q. (2025). Exogenous melatonin enhances rice blast disease resistance by promoting seedling growth and antioxidant defense in rice. International Journal of Molecular Sciences, 26(3), 1171. https://doi.org/10.3390/ijms26031171

[20]

Zhu, G. Y., Sha, P. F., Zhu, X. X., Shi, X. C., Shahriar, M., Zhou, Y. D., Wang, S. Y., & Laborda, P. (2021). Application of melatonin for the control of food-borne Bacillus species in cherry tomatoes. Postharvest Biology and Technology, 181, 111656. https://doi.org/10.1016/j.postharvbio.2021.111656

[21]

Wei, Y., Liu, G., Bai, Y., Xia, F., He, C., & Shi, H. (2017). Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava. Journal of Experimental Botany, 68(17), 4997-5006. https://doi.org/10.1093/jxb/erx305

[22]

Janas, K. M., & Posmyk, M. M. (2013). Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiologiae Plantarum, 35(12), 3285-3292. https://doi.org/10.1007/s11738-013-1372-0

[23]

Gao, Y., Chen, H., Chen, D., & Hao, G. (2023). Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. Journal of Pineal Research, 74(2), e12850. https://doi.org/10.1111/jpi.12850

[24]

Cui, Z., Xue, C., Mei, Q., & Xuan, Y. (2022). Malectin domain protein kinase (MDPK) promotes rice resistance to sheath blight via IDD12, IDD 13, and IDD 14. International Journal of Molecular Sciences, 23(15), 8214. https://doi.org/10.3390/ijms23158214

[25]

Yang, Y., Lin, Q., Chen, X., Liang, W., Fu, Y., Xu, Z., Wu, Y., Wang, X., Zhou, J., Yu, C., Yan, C., Mei, Q., & Chen, J. (2021). Characterization and proteomic analysis of novel rice lesion mimic mutant with enhanced disease resistance. Rice Science, 28(5), 466-478. https://doi.org/10.1016/j.rsci.2021.07.007

[26]

Gao, Y., Xue, C. Y., Liu, J. M., He, Y., Mei, Q., Wei, S., & Xuan, Y. H. (2021). Sheath blight resistance in rice is negatively regulated by WRKY53 via SWEET2a activation. Biochemical and Biophysical Research Communications, 585, 117-123. https://doi.org/10.1016/j.bbrc.2021.11.042

[27]

Yuan, D. P., Xu, X. F., Hong, W. J., Wang, S. T., Jia, X. T., Liu, Y., Li, S., Li, Z. M., Sun, Q., Mei, Q., Li, S., Jung, K. H., Wei, S. H., & Xuan, Y. H. (2020). Transcriptome analysis of rice leaves in response to rhizoctonia solani infection and reveals a novel regulatory mechanism. Plant Biotechnology Reports, 14(5), 559-573. https://doi.org/10.1007/s11816-020-00630-9

[28]

Hwang, O. J., & Back, K. (2018). Melatonin is involved in skotomorphogenesis by regulating brassinosteroid biosynthesis in rice plants. Journal of Pineal Research, 65(2), e12495. https://doi.org/10.1111/jpi.12495

[29]

Gupta, R. (2023). Melatonin: A promising candidate for maintaining food security under the threat of phytopathogens. Plant Physiology and Biochemistry, 198, 107691. https://doi.org/10.1016/j.plaphy.2023.107691

[30]

Mandal, M. K., Suren, H., Ward, B., Boroujerdi, A., & Kousik, C. (2018). Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. Journal of Pineal Research, 65(3), e12505. [Article]. https://doi.org/10.1111/jpi.12505

[31]

Lee, K., Choi, G. H., & Back, K. (2021). Inhibition of rice serotonin N-acetyltransferases by MG149 decreased melatonin synthesis in rice seedlings. Biomolecules, 11(5), 658. https://doi.org/10.3390/biom11050658

[32]

Li, C., He, Q., Zhang, F., Yu, J., Li, C., Zhao, T., Zhang, Y., Xie, Q., Su, B., Mei, L., Zhu, S., & Chen, J. (2019). Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis. The Plant Journal, 100(4), 784-800. https://doi.org/10.1111/tpj.14477

[33]

Zeng, H., Bai, Y., Wei, Y., Reiter, R. J., & Shi, H. (2022). Phytomelatonin as a central molecule in plant disease resistance. Journal of Experimental Botany, 73(17), 5874-5885. https://doi.org/10.1093/jxb/erac111

[34]

Yang, M., & Wang, X. (2017). Multiple ways of BES1/BZR1 degradation to decode distinct developmental and environmental cues in plants. Molecular Plant, 10(7), 915-917. https://doi.org/10.1016/j.molp.2017.06.005

[35]

Senapati, M., Tiwari, A., Sharma, N., Chandra, P., Bashyal, B. M., Ellur, R. K., Bhowmick, P. K., Bollinedi, H., Vinod, K. K., Singh, A. K., & Krishnan, S. G. (2022). Rhizoctonia solani kühn pathophysiology: Status and prospects of sheath blight disease management in rice. Frontiers in Plant Science, 13, 881116. https://doi.org/10.3389/fpls.2022.881116

[36]

Taheri, P., & Tarighi, S. (2011). Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani. European Journal of Plant Pathology, 129(4), 511-528. https://doi.org/10.1007/s10658-010-9725-7

[37]

Byeon, Y., & Back, K. (2014). An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. Journal of Pineal Research, 56(4), 408-414. https://doi.org/10.1111/jpi.12129

[38]

Zhao, D., Luan, Y., Shi, W., Tang, Y., Huang, X., & Tao, J. (2022). Melatonin enhances stem strength by increasing lignin content and secondary cell wall thickness in herbaceous peony. Journal of Experimental Botany, 73(17), 5974-5991. https://doi.org/10.1093/jxb/erac165

[39]

He, J. X., Gendron, J. M., Sun, Y., Gampala, S. S. L., Gendron, N., Sun, C. Q., & Wang, Z. Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307(5715), 1634-1638. https://doi.org/10.1126/science.1107580

[40]

Qi, G., Chen, H., Wang, D., Zheng, H., Tang, X., Guo, Z., Cheng, J., Chen, J., Wang, Y., Bai, M. Y., Liu, F., Wang, D., & Fu, Z. Q. (2021). The BZR1-EDS1 module regulates plant growth-defense coordination. Molecular Plant, 14(12), 2072-2087. https://doi.org/10.1016/j.molp.2021.08.011

[41]

Cheng, M. C., Kathare, P. K., Paik, I., & Huq, E. (2021). Phytochrome signaling networks. Annual Review of Plant Biology, 72(1), 217-244. https://doi.org/10.1146/annurev-arplant-080620-024221

[42]

Ahn, H. R., Kim, Y. J., Lim, Y. J., Duan, S., Eom, S. H., & Jung, K. H. (2021). Key genes in the melatonin biosynthesis pathway with circadian rhythm are associated with various abiotic stresses. Plants, 10(1), 129. https://doi.org/10.3390/plants10010129

[43]

Yuan, D. P., Yang, S., Feng, L., Chu, J., Dong, H., Sun, J., Chen, H., Li, Z., Yamamoto, N., Zheng, A., Li, S., Yoon, H. C., Chen, J., Ma, D., & Xuan, Y. H. (2023). Red-light receptor phytochrome B inhibits BZR1-NAC028-CAD8B signaling to negatively regulate rice resistance to sheath blight. Plant, Cell and Environment, 46(4), 1249-1263. https://doi.org/10.1111/pce.14502

[44]

Dong, H., Liu, J., He, G., Liu, P., & Sun, J. (2020). Photoexcited phytochrome B interacts with brassinazole resistant 1 to repress brassinosteroid signaling in Arabidopsis. Journal of Integrative Plant Biology, 62(5), 652-667. https://doi.org/10.1111/jipb.12822

[45]

Wang, S., Sun, Q., Yang, S., Chen, H., Yuan, D., Gan, C., Chen, H., Zhi, Y., Zhu, H., Gao, Y., Zhu, X., & Xuan, Y. (2025). WRKY36-PIL15 transcription factor complex negatively regulates sheath blight resistance and seed development in rice. Plants, 14(4), 518. https://doi.org/10.3390/plants14040518

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/