Occurrence and integrated control of major rice diseases in China

Ruyi Wang , Zhiyuan Ji , Yanjun Kou , Xiuling Yang , Wenkun Huang , Zongtao Sun , Shimin Zuo , Zhiqiang Li , Yehui Xiong , Yiwen Deng , Xueping Zhou , Guo-Liang Wang , Jie Liu , Yuese Ning

New Plant Protection ›› 2025, Vol. 2 ›› Issue (2) : e70004

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (2) :e70004 DOI: 10.1002/npp2.70004
COMPREHENSIVE REVIEW

Occurrence and integrated control of major rice diseases in China

Author information +
History +
PDF

Abstract

Rice is a vital staple food that sustains half of the world's population. However, it is constantly under threat from a variety of pathogens, including at least 13 fungi, 5 bacteria, 8 viruses, and 6 nematodes. These pathogens can significantly reduce rice yields, posing a serious risk to global food security. The increasing frequency of extreme weather events, coupled with the effects of climate change, has further exacerbated the spread and mutation of these pathogens, leading to a decline in agricultural productivity. This review highlights the major diseases affecting rice in China, including three fungal diseases (rice blast, rice false smut, and rice sheath blight), two bacterial diseases (rice bacterial blight and bacterial leaf streak), two viral diseases (southern rice black-streaked dwarf disease and rice stripe virus), and one nematode (rice root-knot nematodes). The review also proposes future directions for an integrated approach to control these major rice diseases. Overall, addressing the threats posed by these pathogens is crucial to ensure a stable and secure global food supply.

Keywords

integrated control / resistance / rice diseases

Cite this article

Download citation ▾
Ruyi Wang, Zhiyuan Ji, Yanjun Kou, Xiuling Yang, Wenkun Huang, Zongtao Sun, Shimin Zuo, Zhiqiang Li, Yehui Xiong, Yiwen Deng, Xueping Zhou, Guo-Liang Wang, Jie Liu, Yuese Ning. Occurrence and integrated control of major rice diseases in China. New Plant Protection, 2025, 2(2): e70004 DOI:10.1002/npp2.70004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan, S., Linquist, B. A., Wilson, L. T., Cassman, K. G., Stuart, A. M., Pede, V., Miro, B., Saito, K., Agustiani, N., Aristya, V. E., Krisnadi, L. Y., Zanon, A. J., Heinemann, A. B., Carracelas, G., Subash, N., Brahmanand, P. S., Li, T., Peng, S., & Grassini, P. (2021). Sustainable intensification for a larger global rice bowl. Nature Communications, 12(1), 7163. https://doi.org/10.1038/s41467-021-27424-z

[2]

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430-439. https://doi.org/10.1038/s41559-018-0793-y

[3]

Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Asfaliza, R., & Latif, M. A. (2013). Blast resistance in rice: A review of conventional breeding to molecular approaches. Molecular Biology Reports, 40(3), 2369-2388. https://doi.org/10.1007/s11033-012-2318-0

[4]

Yan, X., Tang, B., Ryder, L. S., MacLean, D., Were, V. M., Eseola, A. B., Cruz-Mireles, N., Ma, W., Foster, A. J., Osés-Ruiz, M., & Talbot, N. J. (2023). The transcriptional landscape of plant infection by the rice blast fungus magnaporthe oryzae reveals distinct families of temporally co-regulated and structurally conserved effectors. The Plant Cell, 35(5), 1360-1385. https://doi.org/10.1093/plcell/koad036

[5]

Skamnioti, P., & Gurr, S. J. (2009). Against the grain: Safeguarding rice from rice blast disease. Trends in Biotechnology, 27(3), 141-150.

[6]

Kim, S., Kim, C. Y., Park, S. Y., Kim, K. T., Jeon, J., Chung, H., Choi, G., Kwon, S., Choi, J., Jeon, J., Jeon, J. S., Khang, C. H., Kang, S., & Lee, Y. H. (2020). Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature Communications, 11(1), 5845. https://doi.org/10.1038/s41467-020-19624-w

[7]

Xu, G., Zhong, X., Shi, Y., Liu, Z., Jiang, N., Liu, J., Ding, B., Li, Z., Kang, H., Ning, Y., Liu, W., Guo, Z., Wang, G. L., & Wang, X. (2020). A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity. Science Advances, 6(48), eabb7719. https://doi.org/10.1126/sciadv.abb7719

[8]

Césari, S., Kanzaki, H., Fujiwara, T., Bernoux, M., Chalvon, V., Kawano, Y., Shimamoto, K., Dodds, P., Terauchi, R., & Kroj, T. (2014). The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. The EMBO Journal, 33(17), 1941-1959. https://doi.org/10.15252/embj.201487923

[9]

Cesari, S., Thilliez, G., Ribot, C., Chalvon, V., Michel, C., Jauneau, A., Rivas, S., Alaux, L., Kanzaki, H., Okuyama, Y., Morel, J. B., Fournier, E., Tharreau, D., Terauchi, R., & Kroj, T. (2013). The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. The Plant Cell, 25(4), 1463-1481. https://doi.org/10.1105/tpc.112.107201

[10]

Li, W., Deng, Y., Ning, Y., He, Z., & Wang, G. L. (2020). Exploiting broad-spectrum disease resistance in crops: From molecular dissection to breeding. Annual Review of Plant Biology, 71(1), 575-603. https://doi.org/10.1146/annurev-arplant-010720-022215

[11]

Devanna, B. N., Jain, P., Solanke, A. U., Das, A., Thakur, S., Singh, P. K., Kumari, M., Dubey, H., Jaswal, R., Pawar, D., Kapoor, R., Singh, J., Arora, K., Saklani, B. K., AnilKumar, C., Maganti, S. M., Sonah, H., Deshmukh, R., Rathour, R., & Sharma, T. R. (2022). Understanding the dynamics of blast resistance in rice-Magnaporthe oryzae interactions. Journal of Fungi (Basel), 8(6), 584. https://doi.org/10.3390/jof8060584

[12]

Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., Li, Q., Zhang, J., Wu, S., Milazzo, J., Mao, B., Wang, E., Xie, H., Tharreau, D., & He, Z. (2017). Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 355(6328), 962-965. https://doi.org/10.1126/science.aai8898

[13]

Maqbool, A., Saitoh, H., Franceschetti, M., Stevenson, C. E., Uemura, A., Kanzaki, H., Kamoun, S., Terauchi, R., & Banfield, M. J. (2015). Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. Elife, 4, e08709. https://doi.org/10.7554/eLife.08709

[14]

Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A., & Kamoun, S. (2023). NLR immune receptor-nanobody fusions confer plant disease resistance. Science, 379(6635), 934-939. https://doi.org/10.1126/science.abn4116

[15]

Xiao, N., Wu, Y., Zhang, X., Hao, Z., Chen, Z., Yang, Z., Cai, Y., Wang, R., Yu, L., Wang, Z., Lu, Y., Shi, W., Pan, C., Li, Y., Zhou, C., Liu, J., Huang, N., Liu, G., Ji, H., … Ning, Y. (2023). Pijx confers broad-spectrum seedling and panicle blast resistance by promoting the degradation of ATP β subunit and OsRbohC-mediated ROS burst in rice. Molecular Plant, 16(11), 1832-1846. https://doi.org/10.1016/j.molp.2023.10.001

[16]

Li, W. T., Chern, M. S., Yin, J. J., Wang, J., & Chen, X. W. (2019). Recent advances in broad-spectrum resistance to the rice blast disease. Current Opinion in Plant Biology, 50, 114-120. https://doi.org/10.1016/j.pbi.2019.03.015

[17]

Liu, M., Zhang, S., Hu, J., Sun, W., Padilla, J., He, Y., Li, Y., Yin, Z., Liu, X., Wang, W., Shen, D., Li, D., Zhang, H., Zheng, X., Cui, Z., Wang, G. L., Wang, P., Zhou, B., & Zhang, Z. (2019). Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice. Proceedings of the National Academy of Sciences of the United States of America, 116(35), 17572-17577. https://doi.org/10.1073/pnas.1905123116

[18]

Wang, Y., Yue, J., Yang, N., Zheng, C., Zheng, Y., Wu, X., Yang, J., Zhang, H., Liu, L., Ning, Y., Bhadauria, V., Zhao, W., Xie, Q., Peng, Y. L., & Chen, Q. (2023). An ERAD-related ubiquitin-conjugating enzyme boosts broad-spectrum disease resistance and yield in rice. Nature Food, 4(9), 774-787. https://doi.org/10.1038/s43016-023-00820-y

[19]

Hu, X. H., Shen, S., Wu, J. L., Liu, J., Wang, H., He, J. X., Yao, Z. L., Bai, Y. F., Zhang, X., Zhu, Y., Li, G. B., Zhao, J. H., You, X., Xu, J., Ji, Y. P., Li, D. Q., Pu, M., Zhao, Z. X., Zhou, S. X., … Wang, W. M. (2023). A natural allele of proteasome maturation factor improves rice resistance to multiple pathogens. Nature Plants, 9(2), 228-237. https://doi.org/10.1038/s41477-022-01327-3

[20]

Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., Cheng, M., He, M., Wang, K., Wang, J., Zhou, X., Zhu, X., Chen, Z., Wang, J., Zhao, W., Ma, B., Qin, P., Chen, W., Wang, Y., … Li, S. (2017). A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 170(1), 114-126. https://doi.org/10.1016/j.cell.2017.06.008

[21]

Gao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., Gong, X., Chang, H., Xie, S., Liu, J., Yue, J., Xu, J., Zhang, G., Deng, Y., Wang, E., He, Z., & Yang, W. (2021). Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 184(21), 5391-5404. https://doi.org/10.1016/j.cell.2021.09.009

[22]

Zhou, X., Liao, H., Chern, M., Yin, J., Chen, Y., Wang, J., Zhu, X., Chen, Z., Yuan, C., Zhao, W., Wang, J., Li, W., He, M., Ma, B., Wang, J., Qin, P., Chen, W., Wang, Y., Liu, J., … Ronald, P. C. (2018). Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3174-3179. https://doi.org/10.1073/pnas.1705927115

[23]

Hao, Z., Tian, J., Fang, H., Fang, L., Xu, X., He, F., Li, S., Xie, W., Du, Q., You, X., Wang, D., Chen, Q., Wang, R., Zuo, S., Yuan, M., Wang, G. L., Xia, L., & Ning, Y. (2022). A VQ-motif-containing protein fine-tunes rice immunity and growth by a hierarchical regulatory mechanism. Cell Reports, 40(7), 111235. https://doi.org/10.1016/j.celrep.2022.111235

[24]

Wang, L., Xu, G., Li, L., Ruan, M., Bennion, A., Wang, G. L., Li, R., & Qu, S. (2023). The OsBDR1-MPK3 module negatively regulates blast resistance by suppressing the jasmonate signaling and terpenoid biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 120(13), e2211102120. https://doi.org/10.1073/pnas.2211102120

[25]

Sha, G., Sun, P., Kong, X., Han, X., Sun, Q., Fouillen, L., Zhao, J., Li, Y., Yang, L., Wang, Y., Gong, Q., Zhou, Y., Zhou, W., Jain, R., Gao, J., Huang, R., Chen, X., Zheng, L., Zhang, W., … Ronald, P. C. (2023). Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature, 618(7967), 1017-1023. https://doi.org/10.1038/s41586-023-06205-2

[26]

Hulbert, S., Webb, C., Smith, S., & Sun, Q. (2001). Resistance gene complexes: Evolution and utilization. Annual Review of Phytopathology, 39(1), 285-312. https://doi.org/10.1146/annurev.phyto.39.1.285

[27]

Xiao, N., Pan, C., Li, Y., Wu, Y., Cai, Y., Lu, Y., Wang, R., Yu, L., Shi, W., Kang, H., Zhu, Z., Huang, N., Zhang, X., Chen, Z., Liu, J., Yang, Z., Ning, Y., & Li, A. (2021). Genomic insight into balancing high yield, good quality, and blast resistance of japonica rice. Genome Biology, 22(1), 283. https://doi.org/10.1186/s13059-021-02488-8

[28]

Zaidi, S. SeA., Mahas, A., Vanderschuren, H., & Mahfouz, M. M. (2020). Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biology, 21(1), 289. https://doi.org/10.1186/s13059-020-02204-y

[29]

Tao, H., Shi, X., He, F., Wang, D., Xiao, N., Fang, H., Wang, R., Zhang, F., Wang, M., Li, A., Liu, X., Wang, G. L., & Ning, Y. (2021). Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes. Journal of Integrative Plant Biology, 63(9), 1639-1648. https://doi.org/10.1111/jipb.13145

[30]

Sun, C., Lei, Y., Li, B., Gao, Q., Li, Y., Cao, W., Yang, C., Li, H., Wang, Z., Li, Y., Wang, Y., Liu, J., Zhao, K. T., & Gao, C. (2024). Precise integration of large DNA sequences in plant genomes using primeroot editors. Nature Biotechnology, 42(2), 316-327. https://doi.org/10.1038/s41587-023-01769-w

[31]

Yu, S., Liu, P., Wang, J., Li, D., Zhao, D., Yang, C., Shi, D., & Sun, W. (2023). Molecular mechanisms of Ustilaginoidea virens pathogenicity and their utilization in disease control. Phytopathology Research, 5(1), 16. https://doi.org/10.1186/s42483-023-00171-3

[32]

El-Naggar, M. M., Elsharkawy, M. M., Almalla, R. A., El-Kot, G. A. N., Alwakil, A. M., & Badr, M. (2015). Control of Ustilaginoidea virens, the causal agent of rice false smut disease in Egypt. Egyptian Journal of Biological Pest Control, 25(3), 555-564.

[33]

Zhang, Y., Zhang, K., Fang, A., Han, Y., Yang, J., Xue, M., Bao, J., Hu, D., Zhou, B., Sun, X., Li, S., Wen, M., Yao, N., Ma, L. J., Liu, Y., Zhang, M., Huang, F., Luo, C., Zhou, L., … Peng, Y. L. (2014). Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nature Communications, 5(1), 3849. https://doi.org/10.1038/ncomms4849

[34]

Zheng, D., Wang, Y., Han, Y., Xu, J. R., & Wang, C. (2016). UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Scientific Reports, 6(1), 24824. https://doi.org/10.1038/srep24824

[35]

Tang, J., Bai, J., Chen, X., Zheng, L., Liu, H., & Huang, J. (2020). Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus Ustilaginoidea virens. Current Genetics, 66(2), 409-420. https://doi.org/10.1007/s00294-019-01029-y

[36]

Liang, Y., Han, Y., Wang, C., Jiang, C., & Xu, J. R. (2018). Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system. Frontiers in Plant Science, 9, 699. https://doi.org/10.3389/fpls.2018.00699

[37]

Lv, B., Zheng, L., Liu, H., Tang, J., Hsiang, T., & Huang, J. (2016). Use of random T-DNA mutagenesis in identification of gene UvPRO1, a regulator of conidiation, stress response, and virulence in Ustilaginoidea virens. Frontiers in Microbiology, 7, 2086. https://doi.org/10.3389/fmicb.2016.02086

[38]

Yu, M., Yu, J., Cao, H., Song, T., Pan, X., Qi, Z., Du, Y., Zhang, R., Huang, S., Liu, W., & Liu, Y. (2021). SUN-family protein UvSUN1 regulates the development and virulence of Ustilaginoidea virens. Frontiers in Microbiology, 12, 739453. https://doi.org/10.3389/fmicb.2021.739453

[39]

Yu, M., Yu, J., Hu, J., Huang, L., Wang, Y., Yin, X., Nie, Y., Meng, X., Wang, W., & Liu, Y. (2015). Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Fungal Genetics and Biology, 76, 10-19. https://doi.org/10.1016/j.fgb.2015.01.004

[40]

Yu, J., Yu, M., Song, T., Cao, H., Pan, X., Yong, M., Qi, Z., Du, Y., Zhang, R., Yin, X., & Liu, Y. (2019). A homeobox transcription factor UvHOX2 regulates chlamydospore formation, conidiogenesis, and pathogenicity in Ustilaginoidea virens. Frontiers in Microbiology, 10, 1071. https://doi.org/10.3389/fmicb.2019.01071

[41]

Chen, X., Liu, C., Wang, H., Liu, Q., Yue, Y., Duan, Y., Wang, Z., Zheng, L., Chen, X., Wang, Y., Huang, J., Xu, Q., & Pan, Y. (2024). Ustilaginoidea virens-secreted effector Uv1809 suppresses rice immunity by enhancing OsSRT2-mediated histone deacetylation. Plant Biotechnology Journal, 22(1), 148-164. https://doi.org/10.1111/pbi.14174

[42]

Chen, X., Pei, Z., Liu, H., Huang, J., Chen, X., Luo, C., Hsiang, T., & Zheng, L. (2022). Host-induced gene silencing of fungal-specific genes of Ustilaginoidea virens confers effective resistance to rice false smut. Plant Biotechnology Journal, 20(2), 253-255. https://doi.org/10.1111/pbi.13756

[43]

Li, G. B., Liu, J., He, J. X., Li, G. M., Zhao, Y. D., Liu, X. L., Hu, X. H., Zhang, X., Wu, J. L., Shen, S., Liu, X. X., Zhu, Y., He, F., Gao, H., Wang, H., Zhao, J. H., Li, Y., Huang, F., Huang, Y. Y., … Wang, W. M. (2024). Rice false smut virulence protein subverts host chitin perception and signaling at lemma and palea for floral infection. The Plant Cell, 36(5), 2000-2020. https://doi.org/10.1093/plcell/koae027

[44]

Liu, Y., Lu, F., Chen, Z., Li, Y., & Y, Y. (2000). Rice main cultivation and backup varieties resistance to rice false smut in Jiangsu Province. Crops, 6, 11-13. https://doi.org/10.16035/j.issn.1001-7283.2000.06.006

[45]

Liang, Y., Zhang, X., Li, D., Huang, F., Hu, P., & Peng, Y. (2014). Integrated approach to control false smut in hybrid rice in Sichuan Province, China. Rice Science, 21, 354-360. https://doi.org/10.1016/S1672-6308(14)60269-9

[46]

Zhou, Y. L., Xie, X. W., Zhang, F., Wang, S., Liu, X. Z., Zhu, L. H., Xu, J. L., Gao, Y. M., & Li, Z. K. (2014). Detection of quantitative resistance loci associated with resistance to rice false smut (Ustilaginoidea virens) using introgression lines. Plant Pathology, 63(2), 365-372. https://doi.org/10.1111/ppa.12091

[47]

Huang, Y., Cui, K., Zhang, Z., Chai, R., Xie, H., Shou, J., Fu, J., Li, G., Liu, J., Wu, S., Sun, G., Zhang, J., Deng, Y., & He, Z. (2023). Identification and fine-mapping of quantitative trait loci (QTL) conferring rice false smut resistance in rice. Journal of Genetics and Genomics, 50(4), 276-279. https://doi.org/10.1016/j.jgg.2022.11.010

[48]

Qiu, J., Lu, F., Wang, H., Xie, J., Wang, C., Liu, Z., Meng, S., Sh, H., Shen, X., & Kou, Y. (2020). A candidate gene for the determination of rice resistant to rice false smut. Molecular Breeding, 40(12), 105. https://doi.org/10.1007/s11032-020-01186-w

[49]

Hu, D., Liang, W., & Lai, C. (2018). Advances in the occurrence of rice false smut and its control. Plant Protection, 44, 1-5. https://doi.org/10.16688/j.zwbh.2017491

[50]

Muniraju, K. M., Pramesh, D., Mallesh, S. B., Mallikarjun, K., & Guruprasad, G. S. (2017). Novel fungicides for the management of false smut disease of rice caused by ustilaginoidea virens. International Journal of Current Microbiology and Applied Sciences, 6(11), 2664-2669. https://doi.org/10.1021/acs.jafc.4c05605

[51]

Pandey, N., Vaishnav, R., Rajavat, A. S., Singh, A. N., Kumar, S., Tripathi, R. M., Kumar, M., & Shrivastava, N. (2024). Exploring the potential of Bacillus for crop productivity and sustainable solution for combating rice false smut disease. Frontiers in Microbiology, 15, 1405090. https://doi.org/10.3389/fmicb.2024.1405090

[52]

Molla, K. A., Karmakar, S., Molla, J., Bajaj, P., Varshney, R. K., Datta, S. K., & Datta, K. (2020). Understanding sheath blight resistance in rice: The road behind and the road ahead. Plant Biotechnology Journal, 18(4), 895-915. https://doi.org/10.1111/pbi.13312

[53]

Ahamad, F., & Khan, M. R. (2023). Incidence of sheath blight in irrigated rice and associated yield losses in Northern India. Plant Disease, 107(10), 2907-2915. https://doi.org/10.1094/PDIS-12-22-2905-RE

[54]

Li, C., Guo, Z., Zhou, S., Han, Q., Zhang, M., Peng, Y., Hsiang, T., & Chen, X. (2021). Evolutionary and genomic comparisons of hybrid uninucleate and nonhybrid Rhizoctonia fungi. Communications Biology, 4(1), 201. https://doi.org/10.1038/s42003-021-01724-y

[55]

Chen, X., Chen, Y., Zhang, L., He, Z., Huang, B., Chen, C., Zhang, Q., & Zuo, S. (2019). Amino acid substitutions in a polygalacturonase inhibiting protein (OsPGIP2) increases sheath blight resistance in rice. Rice, 12(1), 56. https://doi.org/10.1186/s12284-019-0318-6

[56]

Lee, D. Y., Jeon, J., Kim, K. T., Cheong, K., Song, H., Choi, G., Ko, J., Opiyo, S. O., Correll, J. C., Zuo, S., Madhav, S., Wang, G. L., & Lee, Y. H. (2021). Comparative genome analyses of four rice-infecting Rhizoctonia solani isolates reveal extensive enrichment of homogalacturonan modification genes. BMC Genomics, 22(1), 242. https://doi.org/10.1186/s12864-021-07549-7

[57]

Faris, J. D., & Friesen, T. L. (2020). Plant genes hijacked by necrotrophic fungal pathogens. Current Opinion in Plant Biology, 56, 74-80. https://doi.org/10.1016/j.pbi.2020.04.003

[58]

He, Y., Zhang, K., Li, S., Lu, X., Zhao, H., Guan, C., Huang, X., Shi, Y., Kang, Z., Fan, Y., Li, W., Chen, C., Li, G., Long, O., Chen, Y., Hu, M., Cheng, J., Xu, B., Chapman, M. A., Zhou, M., & Fernie, A. R. (2023). Multiomics analysis reveals the molecular mechanisms underlying virulence in Rhizoctonia and jasmonic acid-mediated resistance in Tartary buckwheat (Fagopyrum tataricum). The Plant Cell, 35(8), 2773-2798. https://doi.org/10.1093/plcell/koad118

[59]

Yang, S., Fu, Y., Zhang, Y., Peng Yuan, D., Li, S., Kumar, V., Mei, Q., & Hu Xuan, Y. (2023). Rhizoctonia solani transcriptional activator interacts with rice WRKY53 and grassy tiller 1 to activate SWEET transporters for nutrition. Journal of Advanced Research, 50, 1-12. https://doi.org/10.1016/j.jare.2022.10.001

[60]

Prasad, B., & Eizenga, G. C. (2008). Rice sheath blight disease resistance identified in Oryza spp. accessions. Plant Disease, 92(11), 1503-1509. https://doi.org/10.1094/pdis-92-11-1503

[61]

Cao, W., Zhang, H., Zhou, Y., Zhao, J., Lu, S., Wang, X., Chen, X., Yuan, L., Guan, H., Wang, G., Shen, W., De Vleesschauwer, D., Li, Z., Shi, X., Gu, J., Guo, M., Feng, Z., Chen, Z., Zhang, Y., … Liu, Q. (2022). Suppressing chlorophyll degradation by silencing OsNYC3 improves rice resistance to Rhizoctonia solani, the causal agent of sheath blight. Plant Biotechnology Journal, 20(2), 335-349. https://doi.org/10.1111/pbi.13715

[62]

Wang, Y., Sun, Q., Zhao, J., Liu, T., Du, H., Shan, W., Wu, K., Xue, X., Yang, C., Liu, J., Chen, Z., Hu, K., Feng, Z., & Zuo, S. (2023). Fine mapping and candidate gene analysis of qSB12YSB, a gene conferring major quantitative resistance to rice sheath blight. Theoretical and Applied Genetics, 136(12), 246. https://doi.org/10.1007/s00122-023-04482-z

[63]

Wang, A., Shu, X., Jing, X., Jiao, C., Chen, L., Zhang, J., Ma, L., Jiang, Y., Yamamoto, N., Li, S., Deng, Q., Wang, S., Zhu, J., Liang, Y., Zou, T., Liu, H., Wang, L., Huang, Y., Li, P., & Zheng, A. (2021). Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome-wide association study. Plant Biotechnology Journal, 19(8), 1553-1566. https://doi.org/10.1111/pbi.13569

[64]

Oreiro, E. G., Grimares, E. K., Atienza-Grande, G., Quibod, I. L., Roman-Reyna, V., & Oliva, R. (2020). Genome-wide associations and transcriptional profiling reveal ROS regulation as one underlying mechanism of sheath blight resistance in rice. Molecular Plant-Microbe Interactions, 33(2), 212-222. https://doi.org/10.1094/mpmi-05-19-0141-r

[65]

Xie, W., Cao, W., Lu, S., Zhao, J., Shi, X., Yue, X., Wang, G., Feng, Z., Hu, K., Chen, Z., & Zuo, S. (2023). Knockout of transcription factor OsERF65 enhances ROS scavenging ability and confers resistance to rice sheath blight. Molecular Plant Pathology, 24(12), 1535-1551. https://doi.org/10.1111/mpp.13391

[66]

Singh, P., Mazumdar, P., Harikrishna, J. A., & Babu, S. (2019). Sheath blight of rice: A review and identification of priorities for future research. Planta, 250(5), 1387-1407. https://doi.org/10.1007/s00425-019-03246-8

[67]

Zhao, M., Wang, C., Wan, J., Li, Z., Liu, D., Yamamoto, N., Zhou, E., & Shu, C. (2021). Functional validation of pathogenicity genes in rice sheath blight pathogen Rhizoctonia solani by a novel host-induced gene silencing system. Molecular Plant Pathology, 22(12), 1587-1598. https://doi.org/10.1111/mpp.13130

[68]

Rao, T. B., Chopperla, R., Methre, R., Punniakotti, E., Venkatesh, V., Sailaja, B., Reddy, M. R., Yugander, A., Laha, G. S., Madhav, M. S., Sundaram, R. M., Ladhalakshmi, D., Balachandran, S. M., & Mangrauthia, S. K. (2019). Pectin induced transcriptome of a Rhizoctonia solani strain causing sheath blight disease in rice reveals insights on key genes and RNAi machinery for development of pathogen derived resistance. Plant Molecular Biology, 100(1-2), 59-71. https://doi.org/10.1007/s11103-019-00843-9

[69]

Niño-Liu, D. O., Ronald, P. C., & Bogdanove, A. J. (2006). Xanthomonas oryzae pathovars: Model pathogens of a model crop. Molecular Plant Pathology, 7(5), 303-324. https://doi.org/10.1111/j.1364-3703.2006.00344.x

[70]

Cao, J., Chu, C., Zhang, M., He, L., Qin, L., Li, X., & Yuan, M. (2020). Different cell wall-degradation ability leads to tissue-specificity between Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Pathogens, 9(3), 187. https://doi.org/10.3390/pathogens9030187

[71]

Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623-633. https://doi.org/10.1038/nrmicro2415

[72]

Breia, R., Conde, A., Badim, H., Fortes, A. M., Gerós, H., & Granell, A. (2021). Plant sweets: From sugar transport to plant-pathogen interaction and more unexpected physiological roles. Plant Physiology, 186(2), 836-852. https://doi.org/10.1093/plphys/kiab127

[73]

Fiyaz, R. A., Shivani, D., Chaithanya, K., Mounika, K., Chiranjeevi, M., Laha, G. S., Viraktamath, B. C., Rao, L. V. S., & Sundaram, R. M. (2022). Genetic improvement of rice for bacterial blight resistance: Present status and future prospects. Rice Science, 29(2), 118-132. https://doi.org/10.1016/j.rsci.2021.08.002

[74]

Hou, Y., Liang, Y., Yang, C., Ji, Z., Zeng, Y., Li, G., & E, Z. (2023). Complete genomic sequence of Xanthomonas oryzae pv. oryzae strain, LA20, for studying resurgence of rice bacterial blight in the Yangtze River region, China. International Journal of Molecular Sciences, 24(9), 8132. https://doi.org/10.3390/ijms24098132

[75]

Yuan, M., Ke, Y., Huang, R., Ma, L., Yang, Z., Chu, Z., Xiao, J., Li, X., & Wang, S. (2016). A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. Elife, 5, e19605. https://doi.org/10.7554/eLife.19605

[76]

Li, T., Liu, B., Spalding, M. H., Weeks, D. P., & Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 30(5), 390-392. https://doi.org/10.1038/nbt.2199

[77]

Gupta, A., Liu, B., Chen, Q. J., & Yang, B. (2023). High-efficiency prime editing enables new strategies for broad-spectrum resistance to bacterial blight of rice. Plant Biotechnology Journal, 21(7), 1454-1464. https://doi.org/10.1111/pbi.14049

[78]

Wang, M., Li, S., Li, H., Song, C., Xie, W., Zuo, S., Zhou, X., Zhou, C., Ji, Z., & Zhou, H. (2024). Genome editing of a dominant resistance gene for broad-spectrum resistance to bacterial diseases in rice without growth penalty. Plant Biotechnology Journal, 22(3), 529-531. https://doi.org/10.1111/pbi.14233

[79]

Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J. C., Perez-Quintero, A., Li, T., Eom, J. S., Li, C., Nguyen, H., Liu, B., Auguy, F., Sciallano, C., Luu, V. T., Dossa, G. S., Cunnac, S., Schmidt, S. M., Slamet-Loedin, I. H., Vera Cruz, C., Szurek, B., Yang, B., & White, F. F. (2019). Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, 37(11), 1344-1350. https://doi.org/10.1038/s41587-019-0267-z

[80]

Eom, J. S., Luo, D., Atienza-Grande, G., Yang, J., Ji, C., Thi Luu, V., Huguet-Tapia, J. C., Char, S. N., Liu, B., Nguyen, H., Schmidt, S. M., Szurek, B., Vera Cruz, C., White, F. F., Oliva, R., Yang, B., & Frommer, W. B. (2019). Diagnostic kit for rice blight resistance. Nature Biotechnology, 37(11), 1372-1379. https://doi.org/10.1038/s41587-019-0268-y

[81]

Liu, W., Liu, J., Triplett, L., Leach, J. E., & Wang, G. L. (2014). Novel insights into rice innate immunity against bacterial and fungal pathogens. Annual Review of Phytopathology, 52(1), 213-241. https://doi.org/10.1146/annurev-phyto-102313-045926

[82]

Cernadas, R. A., Doyle, E. L., Niño-Liu, D. O., Wilkins, K. E., Bancroft, T., Wang, L., Schmidt, C. L., Caldo, R., Yang, B., White, F. F., Nettleton, D., Wise, R. P., & Bogdanove, A. J. (2014). Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathogens, 10(2), e1003972. https://doi.org/10.1371/journal.ppat.1003972

[83]

Wu, T., Zhang, H., Yuan, B., Liu, H., Kong, L., Chu, Z., & Ding, X. (2022). Tal2b targets and activates the expression of OsF3H03g to hijack OsUGT74H4 and synergistically interfere with rice immunity. New Phytologist, 233(4), 1864-1880. https://doi.org/10.1111/nph.17877

[84]

Wu, J. G., Yang, G. Y., Zhao, S. S., Zhang, S., Qin, B. X., Zhu, Y. S., Xie, H. T., Chang, Q., Wang, L., Hu, J., Zhang, C., Zhang, B. G., Zeng, D. L., Zhang, J. F., Huang, X. B., Qian, Q., Ding, S. W., & Li, Y. (2022). Current rice production is highly vulnerable to insect-borne viral diseases. National Science Review, 9(9), nwac131. https://doi.org/10.1093/nsr/nwac131

[85]

Zhou, G., Wen, J., Cai, D., Li, P., Xu, D., & Zhang, S. (2008). Southern rice black-streaked dwarf virus: A new proposed fijivirus species in the family Reoviridae. Chinese Science Bulletin, 53(23), 3677-3685. https://doi.org/10.1007/s11434-008-0467-2

[86]

Zhang, H. M., Yang, J., Chen, J. P., & Adams, M. (2008). A black-streaked dwarf disease on rice in China is caused by a novel fijivirus. Archives of Virology, 153(10), 1893-1898. https://doi.org/10.1007/s00705-008-0209-4

[87]

Pu, L., Xie, G., Ji, C., Ling, B., Zhang, M., Xu, D., & Zhou, G. (2012). Transmission characteristics of southern rice black-streaked dwarf virus by rice planthoppers. Crop Protection, 41, 71-76. https://doi.org/10.1016/j.cropro.2012.04.026

[88]

Zhou, G., Xu, D., Xu, D., & Zhang, M. (2013). Southern rice black-streaked dwarf virus: A white-backed planthopper-transmitted fijivirus threatening rice production in Asia. Frontiers in Microbiology, 4, 270. https://doi.org/10.3389/fmicb.2013.00270

[89]

Zhai, B., Zhou, G., Tao, X., Chen, X., & Shen, H. (2011). Macroscopic patterns and microscopic mechanisms of the outbreak of rice planthoppers and epidemic SRBSDV. Chinese Journal of Applied Entomology, 48(3), 480-487.

[90]

Zhou, G., Zhang, S., Zou, S., Xu, Z., & Zhou, Z. (2010). Occurrence and damage analysis of a new rice dwarf disease caused by southern rice black-streaked dwarf virus. Plant Protection, 36(2), 144-146. https://doi.org/10.3969/j.issn.0529-1542.2010.02.035

[91]

Lv, M. F., Xie, L., Wang, H. F., Wang, H. D., Chen, J. P., & Zhang, H. M. (2017). Biology of southern rice black-streaked dwarf virus: A novel fijivirus emerging in East Asia. Plant Pathology, 66(4), 515-521. https://doi.org/10.1111/ppa.12630

[92]

Wang, Q., Yang, J., Zhou, G. H., Zhang, H. M., Chen, J. P., & Adams, M. J. (2010). The complete genome sequence of two isolates of southern rice black-streaked dwarf virus, a new member of the genus Fijivirus. Journal of Phytopathology, 158(11-12), 733-737. https://doi.org/10.1111/j.1439-0434.2010.01679.x

[93]

Li, J., Xue, J., Zhang, H. M., Yang, J., Lv, M. F., Xie, L., Meng, Y., Li, P. P., & Chen, J. P. (2013). Interactions between the P6 and P5-1 proteins of southern rice black-streaked dwarf fijivirus in yeast and plant cells. Archives of Virology, 158(8), 1649-1659. https://doi.org/10.1007/s00705-013-1660-4

[94]

Zhao, Y., Cao, X., Zhong, W., Zhou, S., Li, Z., An, H., Liu, X., Wu, R., Bohora, S., Wu, Y., Liang, Z., Chen, J., Yang, X., & Zhang, T. (2022). A viral protein orchestrates rice ethylene signaling to coordinate viral infection and insect vector-mediated transmission. Molecular Plant, 15(4), 689-705. https://doi.org/10.1016/j.molp.2022.01.006

[95]

Li, J., Xue, J., Zhang, H. M., Yang, J., Xie, L., & Chen, J. P. (2015). Characterization of homologous and heterologous interactions between viroplasm proteins P6 and P9-1 of the fijivirus southern rice black-streaked dwarf virus. Archives of Virology, 160(2), 453-457. https://doi.org/10.1007/s00705-014-2268-z

[96]

Jia, D., Chen, H., Zheng, A., Chen, Q., Liu, Q., Xie, L., Wu, Z., & Wei, T. (2012). Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein. Journal of Virology, 86(10), 5800-5807. https://doi.org/10.1128/jvi.07121-11

[97]

Yuan, Z., Geng, Y., Dai, Y., Li, J., Lv, M., Liao, Q., Xie, L., & Zhang, H. M. (2023). A fijiviral nonstructural protein triggers cell death in plant and bacterial cells via its transmembrane domain. Molecular Plant Pathology, 24(1), 59-70. https://doi.org/10.1111/mpp.13277

[98]

Li, L., Zhang, H., Chen, C., Huang, H., Tan, X., Wei, Z., Li, J., Yan, F., Zhang, C., Chen, J., & Sun, Z. (2021). A class of independently evolved transcriptional repressors in plant rna viruses facilitates viral infection and vector feeding. Proceedings of the National Academy of Sciences of the United States of America, 118(11), e2016673118. https://doi.org/10.1073/pnas.2016673118

[99]

Zhang, H., Li, L., He, Y., Qin, Q., Chen, C., Wei, Z., Tan, X., Xie, K., Zhang, R., Hong, G., Li, J., Li, J., Yan, C., Yan, F., Li, Y., Chen, J., & Sun, Z. (2020). Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection. Proceedings of the National Academy of Sciences of the United States of America, 117(16), 9112-9121. https://doi.org/10.1073/pnas.1918254117

[100]

Mauck, K., Bosque-Pérez, N. A., Eigenbrode, S. D., De Moraes, C. M., & Mescher, M. C. (2012). Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Functional Ecology, 26(5), 1162-1175. https://doi.org/10.1111/j.1365-2435.2012.02026.x

[101]

Lei, W., Li, P., Han, Y., Gong, S., Yang, L., & Hou, M. (2016). EPG recordings reveal differential feeding behaviors in Sogatella furcifera in response to plant virus infection and transmission success. Scientific Reports, 6(1), 30240. https://doi.org/10.1038/srep30240

[102]

Zhang, L., Liu, W., Zhang, X., Li, L., & Wang, X. (2021). Southern rice black-streaked dwarf virus hijacks SNARE complex of its insect vector for its effective transmission to rice. Molecular Plant Pathology, 22(10), 1256-1270. https://doi.org/10.1111/mpp.13109

[103]

Lu, G., Zhang, T., He, Y., & Zhou, G. (2016). Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defence and volatile-biosynthesis genes. Scientific Reports, 6(1), 38581. https://doi.org/10.1038/srep38581

[104]

Zhang, H., Wang, F., Song, W., Yang, Z., Li, L., Ma, Q., Tan, X., Wei, Z., Li, Y., Li, J., Yan, F., Chen, J., & Sun, Z. (2023). Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1. Nature Communications, 14(1), 3011. https://doi.org/10.1038/s41467-023-38805-x

[105]

Li, L., Zhang, H., Yang, Z., Wang, C., Li, S., Cao, C., Yao, T., Wei, Z., Li, Y., Chen, J., & Sun, Z. (2022). Independently evolved viral effectors convergently suppress DELLA protein SLR1-mediated broad-spectrum antiviral immunity in rice. Nature Communications, 13(1), 6920. https://doi.org/10.1038/s41467-022-34649-z

[106]

Li, L., Chen, J., & Sun, Z. (2024). Exploring the shared pathogenic strategies of independently evolved effectors across distinct plant viruses. Trends in Microbiology, 32(10), 1021-1033. https://doi.org/10.1016/j.tim.2024.03.001

[107]

Tan, X., Zhang, H., Yang, Z., Wei, Z., Li, Y., Chen, J., & Sun, Z. (2022). NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice. PLoS Pathogens, 18(5), e1010548. https://doi.org/10.1371/journal.ppat.1010548

[108]

Tan, X., Wang, G., Cao, C., Yang, Z., Zhang, H., Li, Y., Wei, Z., Chen, J., & Sun, Z. (2024). Two different viral proteins suppress NUCLEAR FACTOR-YC-mediated antiviral immunity during infection in rice. Plant Physiology, 195(1), 850-864. https://doi.org/10.1093/plphys/kiae070

[109]

Wang, Z., Zhou, L., Lan, Y., Li, X., Wang, J., Dong, J., Guo, W., Jing, D., Liu, Q., Zhang, S., Liu, Z., Shi, W., Yang, W., Yang, T., Sun, F., Du, L., Fu, H., Ma, Y., Shao, Y, & Zhou, T. (2022). An aspartic protease 47 causes quantitative recessive resistance to rice black-streaked dwarf virus disease and southern rice black-streaked dwarf virus disease. New Phytologist, 233(6), 2520-2533. https://doi.org/10.1111/nph.17961

[110]

Xu, Y., Fu, S., Tao, X., & Zhou, X. (2021). Rice stripe virus: Exploring molecular weapons in the arsenal of a negative-sense rna virus. Annual Review of Phytopathology, 59(1), 351-371. https://doi.org/10.1146/annurev-phyto-020620-113020

[111]

Ge, P., Lu, H., Wang, W., Ma, Y., Li, Y., Zhou, T., Wei, T., Wu, J., & Cui, F. (2024). Plasmodesmata-associated flotillin positively regulates broad-spectrum virus cell-to-cell trafficking. Plant Biotechnology Journal, 22(5), 1387-1401. https://doi.org/10.1111/pbi.14274

[112]

Kong, L., Wu, J., Lu, L., Xu, Y., & Zhou, X. (2014). Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Molecular Plant, 7(4), 691-708. https://doi.org/10.1093/mp/sst158

[113]

Fu, S., Wang, K., Ma, T., Liang, Y., Ma, Z., Wu, J., Xu, Y., & Zhou, X. (2022). An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. The Plant Cell, 34(5), 1822-1843. https://doi.org/10.1093/plcell/koac055

[114]

Wang, K., Fu, S., Wu, L., Wu, J., Wang, Y., Xu, Y., & Zhou, X. (2023). Rice stripe virus nonstructural protein 3 suppresses plant defence responses mediated by the MEL-SHMT1 module. Molecular Plant Pathology, 24(11), 1359-1369. https://doi.org/10.1111/mpp.13373

[115]

Yang, Z., Du, J., Tan, X., Zhang, H., Li, L., Li, Y., Wei, Z., Xu, Z., Lu, Y., Chen, J., & Sun, Z. (2024). Histone deacetylase OsHDA706 orchestrates rice broad-spectrum antiviral immunity and is impeded by a viral effector. Cell Reports, 43(3), 113838. https://doi.org/10.1016/j.celrep.2024.113838

[116]

Liu, W., Hajano, J.-U. D., & Wang, X. (2018). New insights on the transmission mechanism of tenuiviruses by their vector insects. Current Opinion in Virology, 33, 13-17. https://doi.org/10.1016/j.coviro.2018.07.004

[117]

Yu, J., Zhao, W., Chen, X., Lu, H., Xiao, Y., Li, Q., Luo, L., Kang, L., & Cui, F. (2024). A plant virus manipulates the long-winged morph of insect vectors. Proceedings of the National Academy of Sciences of the United States of America, 121(3), e2315341121. https://doi.org/10.1073/pnas.2315341121

[118]

Zhu, M., Wu, N., Zhong, J., Chen, C., Liu, W., Ren, Y., Wang, X., & Jin, H. (2024). N6-methyladenosine modification of the mRNA for a key gene in purine nucleotide metabolism regulates virus proliferation in an insect vector. Cell Reports, 43(2), 113821. https://doi.org/10.1016/j.celrep.2024.113821

[119]

Li, C., Wu, J., Fu, S., Xu, Y., Wang, Y., Yang, X., Lan, Y., Lin, F., Du, L., Zhou, T., & Zhou, X. (2024). Development of a transgenic rice line with strong and broad resistance against four devastating rice viruses through expressing a single hairpin RNA construct. Plant Biotechnology Journal, 22(8), 2142-2144. https://doi.org/10.1111/pbi.14334

[120]

Prot, J. C. (1994). The combination of nematodes, Sesbania rostrata, and rice: The two sides of the coin. International Rice Research Notes, 19(3), 30-31.

[121]

Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J. E., Wesemael, W. M. L., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14(9), 946-961. https://doi.org/10.1111/mpp.12057

[122]

Liu, G., Xiao, S., Zhang, S., Zhang, D., & Wang, Y. (2011). Infection characteristic and life cycle of rice root-knot nematode, Meloidogyne graminicola in rice root. Chinese Journal of Tropical Crops, 32(4), 743-748.

[123]

Rusinque, L., Maleita, C., Abrantes, I., Palomares-Rius, J. E., & Inácio, M. L. (2021). Meloidogyne graminicola-a threat to rice production: Review update on distribution, biology, identification, and management. Biology, 10(11), 1163. https://doi.org/10.3390/biology10111163

[124]

Tandingan, I. C., Prot, J. C., & Davide, R. G. (1996). Influence of water management on tolerance of rice cultivars for Meloidogyne graminicola. Fundamental and Applied Nematology, 19(2), 189-192.

[125]

Wang, Y., Wei, M., Yang, F., Li, Y., Shi, Q., & Wang, X. (2014). Research progress on pathogenesis of vegetable root-knot nematode and its prevention and control technology. China Vegetables, 1(2), 9-14.

[126]

Song, H. D., Lin, B. R., Huang, Q. L., Sun, L. H., Chen, J. S., Hu, L. L., Zhuo, K., & Liao, J. L. (2021). The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice. Journal of Experimental Botany, 72(15), 5638-5655. https://doi.org/10.1093/jxb/erab208

[127]

Chen, J. S., Hu, L. L., Sun, L. H., Lin, B. R., Huang, K., Zhuo, K., & Liao, J. L. (2018). A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism. Molecular Plant Pathology, 19(8), 1942-1955. https://doi.org/10.1111/mpp.12671

[128]

Anupam , Kaur, D. N., & Dharminder, B. (2022). Genome wide association studies to identify donors and QTLs for resistance to Meloidogyne graminicola in a collection of Oryza rufipogon accessions. Plant Disease Research, 37(2), 259.

[129]

Wang, X., Cheng, R., Xu, D., Huang, R., Li, H., Jin, L., Wu, Y., Tang, J., Sun, C., Peng, D., Chu, C., & Guo, X. (2023). MG1 interacts with a protease inhibitor and confers resistance to rice root-knot nematode. Nature Communications, 14(1), 3354. https://doi.org/10.1038/s41467-023-39080-6

[130]

Zhan, L. P., Peng, D. L., Wang, X. L., Kong, L. A., Peng, H., Liu, S. M., Liu, Y., & Huang, W. K. (2018). Priming effect of root-applied silicon on the enhancement of induced resistance to the root-knot nematode Meloidogyne graminicola in rice. BMC Plant Biology, 18(1), 50. https://doi.org/10.1186/s12870-018-1266-9

[131]

Chavan, S. N., De Kesel, J., Desmedt, W., Degroote, E., Singh, R. R., Nguyen, G. T., Demeestere, K., De Meyer, T., & Kyndt, T. (2022). Dehydroascorbate induces plant resistance in rice against root-knot nematode Meloidogyne graminicola. Molecular Plant Pathology, 23(9), 1303-1319. https://doi.org/10.1111/mpp.13230

[132]

Liu, M., Peng, D., Su, W., Xiang, C., Jian, J., Zhao, J., Peng, H., Liu, S., Kong, L., Dai, L., Huang, W., & Liu, J. (2022). Potassium sulphate induces resistance of rice against the root-knot nematode Meloidogynegraminicola. Journal of Integrative Agriculture, 21(11), 3263-3277. https://doi.org/10.1016/j.jia.2022.08.002

[133]

Tuncsoy, B. (2021). Nematicidal activity of silver nanomaterials against plant-parasitic nematodes. In Silver Nanomaterials for Agri-Food Applications (pp. 527-548). Elsevier. https://doi.org/10.1016/B978-0-12-823528-7.00020-2

[134]

Rao, Y. S., Prasad, J. S., Yadav, C. P., & Padalia, C. R. (1984). The influence of rotation crops in rice soils on the dynamics of parasitic nematodes. Biological Agriculture & Horticulture, 2(1), 69-78. https://doi.org/10.1080/01448765.1984.9754415

[135]

Mahanta, H. K., & Mahapatra, S. N. (2012). Bio-management of rice root-knot nematode, Meloidogyne graminicola. Indian Journal of Nematology, 42(2), 183-185.

[136]

Dimkpa, S. O. N., Lahari, Z., Shrestha, R., Douglas, A., Gheysen, G., & Price, A. H. (2016). A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes. Journal of Experimental Botany, 67(4), 1191-1200. https://doi.org/10.1093/jxb/erv470

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/