Visual and supersensitive detection of E. pyrifoliae infection in pear trees through dot enzyme-linked immunosorbent assay and colloidal gold immunochromatographic strip techniques

Nairu Liu , Cui Zhang , Xi Zhang , Jie Dong , Xueping Zhou , Binggan Lou , Jianxiang Wu

New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e70001

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e70001 DOI: 10.1002/npp2.70001
ORIGINAL PAPER

Visual and supersensitive detection of E. pyrifoliae infection in pear trees through dot enzyme-linked immunosorbent assay and colloidal gold immunochromatographic strip techniques

Author information +
History +
PDF

Abstract

Asian pear fire blight, caused by Erwinia pyrifoliae, is a devastating disease affecting pear trees. Effective integrated management of this disease depends on the timely and accurate detection and removal of diseased trees within orchards. Here, we developed four highly sensitive and specific monoclonal antibodies (MAbs) against E. pyrifoliae using isolated E. pyrifoliae as the immunogen and then established two serological techniques, dot enzyme-linked immunosorbent assay (dot-ELISA) and colloidal gold immunochromatographic strip (CGICS) assay, for detecting E. pyrifoliae using the obtained MAbs as detection antibodies. Both dot-ELISA and CGICS can detect eight different E. pyrifoliae strains from China and have no cross-reactivity with other 11 tested plant control bacteria. Furthermore, dot-ELISA and CGICS can detect E. pyrifoliae in bacterial suspensions diluted up to 7.81 × 103 CFU/mL and 3.91 × 103 CFU/mL, respectively, which were about 4 and 8 times more sensitive than conventional polymerase chain reaction (PCR). Additionally, CGICS was capable of detecting E. pyrifoliae in pear leaf homogenates diluted up to 1:10240 (w/v, g/mL). The detection results of 20 blinded pear tissue samples using both serological techniques were consistent with those obtained from PCR. Therefore, we conclude that these two newly developed techniques are suitable for large-scale detection of E. pyrifoliae in pear orchards.

Keywords

Asian pear fire blight / colloidal gold immunochromatographic strip assay / dot-ELISA / E. pyrifoliae / monoclonal antibody

Cite this article

Download citation ▾
Nairu Liu, Cui Zhang, Xi Zhang, Jie Dong, Xueping Zhou, Binggan Lou, Jianxiang Wu. Visual and supersensitive detection of E. pyrifoliae infection in pear trees through dot enzyme-linked immunosorbent assay and colloidal gold immunochromatographic strip techniques. New Plant Protection, 2025, 2(1): e70001 DOI:10.1002/npp2.70001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim, W. S., Jock, S., Paulin, J. P., Rhim, S. L., & Geider, K. (2001). Molecular detection and differentiation of E. pyrifoliae and host range analysis of the Asian pear pathogen. Plant Disease, 85(11), 1183-1188. https://doi.org/10.1094/PDIS.2001.85.11.1183

[2]

Zhao, Y., Tian, Y., Wang, L., Geng, G., Zhao, W., Hu, B., & Zhao, Y. (2019). Fire blight disease, a fast-approaching threat to apple and pear production in China. Journal of Integrative Agriculture, 18(4), 815-820. https://doi.org/10.1016/S2095-3119(18)62033-7

[3]

Mahmud, M. S., He, L., Zahid, A., Heinemann, P., Choi, D., Krawczyk, G., & Zhu, H. (2023). Detection and infected area segmentation of apple fire blight using image processing and deep transfer learning for site-specific management. Computers and Electronics in Agriculture, 209, 107862. https://doi.org/10.1016/j.compag.2023.107862

[4]

Rhim, S. L., Völksch, B., Gardan, L., Paulin, J. P., Langlotz, C., Kim, W. S., & Geider, K. (1999). E. pyrifoliae, an Erwinia species different from E. amylovora, causes a necrotic disease of Asian pear trees. Plant Pathology, 48(4), 514-520. https://doi.org/10.1046/j.1365-3059.1999.00376.x

[5]

Long, H., Yang, W., Chen, Z., Zheng, Y., & Wang, Y. (2008). Research progress on pathogen-related factors of Asian pear fire blight disease. Plant Quarantine, 6, 389-392. https://doi.org/10.19662/j.cnki.issn1005-2755.2008.06.023

[6]

Jock, S., Langlotz, C., & Geider, K. (2005). Survival and possible spread of E. amylovora and related plant-pathogenic bacteria exposed to environmental stress conditions. Journal of Phytopathology, 153(2), 87-93. https://doi.org/10.1111/j.1439-0434.2004.00934.x

[7]

Shang, M., Zhao, W., Li, Z., Yang, W., & Zhu, Y. (2009). Risk analysis of Asian pear fire Phytophthora infestations in China. Plant Quarantine, 23(6), 37-39. https://doi.org/10.19662/j.cnki.issn1005-2755.2009.06.014

[8]

Shrestha, R., Lee, S. H., Hur, J. H., & Lim, C. K. (2005). The effects of temperature, pH, and bactericides on the growth of E. pyrifoliae and E. amylovora. Plant Pathology Journal, 21(2), 127-131. https://doi.org/10.5423/PPJ.2005.21.2.127

[9]

Erskine, J. M. (1973). Association of virulence characteristics of E. amylovora with toxigenicity of its phage lysates to rabbit. Canadian Journal of Microbiology, 19(7), 875-877. https://doi.org/10.1139/m73-139

[10]

Zhang, A., & Miao, H. (2008). Distinguish and identification techniques of plant pathogenic bacteria. Journal of Hebei Agricultural Sciences, 8, 30-32. https://doi.org/10.16318/j.cnki.hbnykx.2008.08.014

[11]

Zhang, C., Dong, S., Liu, Z., Liu, N., Zhang, X., Dong, J., Zhou, X., Guo, Y., & Wu, J. (2024). Modulating of d-band center in Cu single-atom anchored Co3O4 nanozyme for sensitive immunochromatographic test strip. Chemical Engineering Journal, 499, 155962. https://doi.org/10.1016/j.cej.2024.155962

[12]

Dong, S., Liu, N., Zhang, X., Zhang, C., Li, B., An, Q., Zhou, X., & Wu, J. (2024). Highly specific and super-sensitive Dot-ELISA and colloidal gold immunochromatographic strip for detecting Xanthomonas oryzae pv. oryzicola of rice bacterial leaf streak. Phytopathology Research, 6(1), 8. https://doi.org/10.1186/s42483-024-00227-y

[13]

Li, X., Guo, L., Guo, M., Qi, D., Zhou, X., Li, F., & Wu, J. (2021). Three highly sensitive monoclonal antibody-based serological assays for the detection of tomato mottle mosaic virus. Phytopathology Research, 3(1), 23. https://doi.org/10.1186/s42483-021-00100-2

[14]

Zhang, C., Guo, M., Dong, J., Liu, L., Zhou, X., & Wu, J. (2023). Visual and super-sensitive detection of maize chlorotic mottle virus by Dot-ELISA and Au nanoparticle-based immunochromatographic test strip. Viruses, 15(7), 1607. https://doi.org/10.3390/v15071607

[15]

Guo, M., Qi, D., Dong, J., Dong, S., Yang, X., Qian, Y., Zhou, X., & Wu, J. (2023). Development of Dot-ELISA and colloidal gold immunochromatographic strip for rapid and super-sensitive detection of plum pox virus in apricot trees. Viruses, 15(1), 169. https://doi.org/10.3390/v15010169

[16]

He, W., Wu, J., Ren, Y., Zhou, X., Zhang, S., Qian, Y., Li, F., & Wu, J. (2020). Highly sensitive serological approaches for pepino mosaic virus detection. Journal of Zhejiang University - Science B, 21(10), 811-822. https://doi.org/10.1631/jzus.B2000255

[17]

Dong, S., Liu, N., Zhang, X., Zhang, C., Li, B., An, Q., Zhou, X., & Wu, J. (2024). Highly specific and super-sensitive dot-ELISA and colloidal gold immunochromatographic strip for detecting Xanthomonas oryzae pv. oryzicola of rice bacterial leaf streak. Phytopathology Research, 6(1), 8. https://doi.org/10.1186/s42483-024-00227-y

[18]

Somerton, B. T., & Morgan, B. L. (2024). Comparison of plate counting with flow cytometry, using four different fluorescent dye techniques, for the enumeration of bacillus cereus in milk. Journal of Microbiological Methods, 223, 106978. https://doi.org/10.1016/j.mimet.2024.106978

[19]

Zhou, S., Xu, L., Liu, L., Kuang, H., & Xu, C. (2020). Development of a monoclonal antibody-based immunochromatographic assay for the detection of carbamazepine and carbamazepine-10, 11-epoxide. Journal of Chromatography B, 1141, 122036. https://doi.org/10.1016/j.jchromb.2020.122036

[20]

Huang, D., Chen, R., Wang, Y., Hong, J., Zhou, X., & Wu, J. (2019). Development of a colloidal gold-based immunochromatographic strip for rapid detection of rice stripe virus. Journal of Zhejiang University - Science B, 20(4), 343-354. https://doi.org/10.1631/jzus.B1800563

[21]

Guo, L., Wu, J., Chen, R., Hong, J., Zhou, X., & Wu, J. (2020). Monoclonal antibody-based serological detection of rice stripe mosaic virus infection in rice plants or leafhoppers. Virologica Sinica, 35(2), 227-234. https://doi.org/10.1007/s12250-019-00186-1

[22]

Wu, J., Zhang, Y., Zhou, X., & Qian, Y. (2021). Three sensitive and reliable serological assays for detection of potato virus A in potato plants. Journal of Integrative Agriculture, 20(11), 2966-2975. https://doi.org/10.1016/S2095-3119(20)63492-X

[23]

He, W., Huang, D., Wu, J., Li, X., Qian, Y., Li, B., Lou, B., & Wu, J. (2021). Three highly sensitive and high-throughput serological approaches for detecting Dickeya dadantii in sweet potato. Plant Disease, 105(4), 832-839. https://doi.org/10.1094/PDIS-07-20-1551-RE

[24]

Huang, Q., Bu, T., Zhang, W., Yan, L., Zhang, M., Yang, Q., Huang, L., Yang, B., Hu, N., Suo, Y., Wang, J., & Zhang, D. (2018). An improved clenbuterol detection by immunochromatographic assay with bacteria@Au composite as signal amplifier. Food Chemistry, 262, 48-55. https://doi.org/10.1016/j.foodchem.2018.04.085

[25]

Li, Y., Xu, X., Liu, L., Kuang, H., Xu, L., & Xu, C. (2020). A gold nanoparticle-based lateral flow immunosensor for ultrasensitive detection of tetrodotoxin. Analyst, 145(6), 2143-2151. https://doi.org/10.1039/D0AN00170H

[26]

Mustafaoglu, N., Kiziltepe, T., & Bilgicer, B. (2017). Site-specific conjugation of an antibody on a gold nanoparticle surface for one-step diagnosis of prostate specific antigen with dynamic light scattering. Nanoscale, 9(25), 8684-8694. https://doi.org/10.1039/c7nr03096g

[27]

Verheijen, R., Osswald, I. K., Dietrich, R., & Haasnoot, W. (2000). Development of a one step strip test for the detection of (dihydro)streptomycin residues in raw milk. Food and Agricultural Immunology, 12(1), 31-40. https://doi.org/10.1080/09540100099607

[28]

Byzova, N. A., Safenkova, I. V., Slutskaya, E. S., Zherdev, A. V., & Dzantiev, B. B. (2017). Less is more: A comparison of antibody-gold nanoparticle conjugates of different ratios. Bioconjugate Chemistry, 28(11), 2737-2746. https://doi.org/10.1021/acs.bioconjchem.7b00489

[29]

Xu, X., Lei, X., Ye, L., Song, S., Liu, L., Xu, L., Xu, C., & Kuang, H. (2022). Gold-based paper sensor for sensitive detection of procalcitonin in clinical samples. Chinese Journal of Analytical Chemistry, 50(4), 100062. https://doi.org/10.1016/j.cjac.2022.100062

[30]

Mou, D., Zhou, Y., & Bai, X. (2022). Research progress of monoclonal antibody technology and analysis of marketed drugs. Pharmaceutical Biotechnology, 29(1), 87-94. https://doi.org/10.19526/j.cnki.1005-8915.20220117

[31]

Feng, Q., Li, Y., Sun, J., Liang, D., & Zhao, P. (2020). Preparation and identification of monoclonal antibody against melamine. Journal of Food Safety and Quality, 11(15), 5303-5308. https://doi.org/10.19812/j.cnki.jfsq11-5956/ts.2020.15.066

[32]

Xiao, Z., Huang, Z., Lin, Y., Dong, B., & Tian, S. (2013). Study on purification methods of monoclonal antibody from mouse ascites fluid. Chinese Medicinal Biotechnology, 8(6), 425-428. https://doi.org/10.3969/cmba.j.issn.1673-713X.2013.06.005

[33]

Zhou, Y., Li, Y., Pan, F., Tan, J., Liu, Z., & Wang, Z. (2006). The study of purified methods of mice ascites IgG McAb. Heilongjiang Animal Science and Veterinary Medicine, 10, 14-16. https://doi.org/10.13881/j.cnki.hljxmsy.2006.10.007

[34]

Fu, L., Fu, S., Wang, Y., Wang, C., Zhang, Y., Wu, Q., & Ma, A. (2017). Optimization of purification by ammonium sulfate precipitation of the major allergen tropomyosin from shrimp (Litopenaeus vannamei). Food Science, 38(18), 187-192. https://doi.org/10.7506/spkx1002-6630-201718030

[35]

Li, Y., Xu, C., Huang, X., Sun, J., Chang, L., Yang, X., Jin, Z., & Wang, J. (2022). Optimized ammonium sulfate method for purification of monoclonal antibodies. Pharmaceutical Biotechnology, 29(4), 358-361. https://doi.org/10.19526/j.cnki.1005-8915.20220405

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/