PDF
Abstract
Fumigants are broad-spectrum pesticides that exhibit multi-site activity and are effective against various pests including fungi, bacteria, insects, nematodes, weeds, and rodents. These chemicals are characterized by small molecular weights, low boiling points, and high vapor pressures. Because of their unique physical and chemical properties, fumigants demonstrate excellent efficacy in pest control through robust diffusion, distribution, and penetration abilities, coupled with specialized fumigation techniques. Although predominantly utilized in soil and grain fumigation, their applications also extend to quarantine and commodity fumigation. This article reviews the mechanisms of action of both traditional and emerging fumigants, such as methyl bromide, chloropicrin, phosphine, allyl isothiocyanate, dimethyl disulfide, sulfuryl fluoride, ethanedinitrile, ethyl formate, and ethylicin. The objective is to provide a theoretical foundation for ongoing research and the development of fumigants and their applications.
Keywords
chloropicrin
/
grain fumigation
/
mode of action
/
phosphine
/
soil fumigation
Cite this article
Download citation ▾
Dongdong Yan, Jingyi Liu, Xin Wang, Wensheng Fang, Yuan Li, Aocheng Cao, Qiuxia Wang.
A review on the mechanisms of fumigant action.
New Plant Protection, 2025, 2(1): e27 DOI:10.1002/npp2.27
| [1] |
Ruzo, L. O. (2006). Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant. Pest Management Science, 62(2), 99-113. https://doi.org/10.1002/ps.1135
|
| [2] |
Yonglin, R., Desmarchelier, J. M., & Watson, F. (1997). Effect of grain fumigants on lipids in vivo and in vitro. Journal of Agricultural and Food Chemistry, 45(7), 2626-2629. https://doi.org/10.1021/jf960917a
|
| [3] |
Campbell, J. F., Buckman, K. A., Fields, P. G., & Subramanyam, B. (2015). Evaluation of structural treatment efficacy against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) using meta-analysis of multiple studies conducted in food facilities. Journal of Economic Entomology, 108(5), 2125-2140. https://doi.org/10.1093/jee/tov215
|
| [4] |
Seabright, K., Davila-Flores, A., Myers, S., & Taylor, A. (2020). Efficacy of methyl bromide and alternative fumigants against pinewood nematode in pine wood samples. Journal of Plant Diseases and Protection, 127(3), 393-400. https://doi.org/10.1007/s41348-019-00297-7
|
| [5] |
Kumar, S., Mohapatra, D., Kotwaliwale, N., & Singh, K. K. (2017). Vacuum hermetic fumigation: A review. Journal of Stored Products Research, 71, 47-56. https://doi.org/10.1016/j.jspr.2017.01.002
|
| [6] |
Otten, W., & Gilligan, C. A. (2006). Soil structure and soil-borne diseases: Using epidemiological concepts to scale from fungal spread to plant epidemics. European Journal of Soil Science, 57(1), 26-37. https://doi.org/10.1111/j.1365-2389.2006.00766.x
|
| [7] |
Manandhar, A., Milindi, P., & Shah, A. (2018). An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture, 8(4), 57. https://doi.org/10.3390/agriculture8040057
|
| [8] |
Zhang, D., Cheng, H., Hao, B., Li, Q., Wu, J., Zhang, Y., Fang, W., Yan, D., Li, Y., Wang, Q., Jin, X., He, L., & Cao, A. (2021). Fresh chicken manure fumigation reduces the inhibition time of chloropicrin on soil bacteria and fungi and increases beneficial microorganisms. Environmental Pollution, 286, 117460. https://doi.org/10.1016/j.envpol.2021.117460
|
| [9] |
Bell, C. H. (2000). Fumigation in the 21st century. Crop Protection, 19(8–10), 563-569. https://doi.org/10.1016/s0261-2194(00)00073-9
|
| [10] |
Ren, Y., Lee, B., & Padovan, B. (2011). Penetration of methyl bromide, sulfuryl fluoride, ethanedinitrile and phosphine into timber blocks and the sorption rate of the fumigants. Journal of Stored Products Research, 47(2), 63-68. https://doi.org/10.1016/j.jspr.2010.04.006
|
| [11] |
Castellano-Hinojosa, A., Boyd, N. S., & Strauss, S. L. (2022). Impact of fumigants on non-target soil microorganisms: A review. Journal of Hazardous Materials, 427, 128149. https://doi.org/10.1016/j.jhazmat.2021.128149
|
| [12] |
Wang, X., Wang, Q., Zhang, D., Liu, J., Fang, W., Li, Y., Cao, A., Wang, Q., & Yan, D. (2024). Fumigation alters the manganese-oxidizing microbial communities to enhance soil manganese availability and increase tomato yield. Science of the Total Environment, 919, 170882. https://doi.org/10.1016/j.scitotenv.2024.170882
|
| [13] |
Yan, D., Wang, Q., Song, Z., Fang, W., Wang, Q., Li, Y., & Cao, A. (2022). Activation effect of soil available nitrogen, manganese and cobalt after addition of different fumigants. Environmental Research Communications, 4(4), 041002. https://doi.org/10.1088/2515-7620/ac64ed
|
| [14] |
Plumier, B. M., Schramm, M., Ren, Y., & Maier, D. E. (2020). Modeling post-fumigation desorption of phosphine in bulk stored grain. Journal of Stored Products Research, 85, 101548. https://doi.org/10.1016/j.jspr.2019.101548
|
| [15] |
MBTOC. (2014). Report of the methyl bromide technical options committee (M. Pizano, I. Porter, & M. Besri, Eds.). United Nations Environment Programme.
|
| [16] |
Yan, D., Wang, Q., Mao, L., Xie, H., Guo, M., & Cao, A. (2012). Evaluation of chloropicrin gelatin capsule gormulation as a soil fumigant for greenhouse strawberry in China. Journal of Agricultural and Food Chemistry, 60(20), 5023-5027. https://doi.org/10.1021/jf300532x
|
| [17] |
Williams, P., Hepworth, G., Goubran, F., Muhunthan, M., & Dunn, K. (2000). Phosphine as a replacement for methyl bromide for postharvest disinfestation of citrus. Postharvest Biology and Technology, 19(2), 193-199. https://doi.org/10.1016/S0925-5214(00)00093-4
|
| [18] |
Ren, Z., Li, Y., Fang, W., Yan, D., Huang, B., Zhu, J., Wang, X., Wang, X., Wang, Q., Guo, M., & Cao, A. (2018). Evaluation of allyl isothiocyanate as a soil fumigant against soil-borne diseases in commercial tomato (Lycopersicon esculentum Mill.) production in China. Pest Management Science, 74(9), 2146-2155. https://doi.org/10.1002/ps.4911
|
| [19] |
Hasan, M. M., Aikins, M. J., Schilling, M. W., & Phillips, T. W. (2021). Sulfuryl fluoride as a methyl bromide alternative for fumigation of necrobia rufipes (Coleoptera: Cleridae) and tyrophagus putrescentiae (Sarcoptiformes: Acaridae), major pests of animal-based stored products. Journal of Stored Products Research, 91, 101769. https://doi.org/10.1016/j.jspr.2021.101769
|
| [20] |
Yan, D., Cao, A., Wang, Q., Li, Y., Canbin, O., Guo, M., & Guo, X. (2019). Dimethyl disulfide (DMDS) as an effective soil fumigant against nematodes in China. PLoS One, 14(10), e0224456. https://doi.org/10.1371/journal.pone.0224456
|
| [21] |
Bond, E. J. (1984). Manual of fumigation for insect control (V. D. T. D. Caracalla, Ed.). Food and Agriculture Organization of the United Nations.
|
| [22] |
Bharathi, V. S. K., & Jayas, D. S. (2024). Ethyl formate: A comprehensive review on its function as a fumigant for stored products. Journal of Stored Products Research, 106, 102280. https://doi.org/10.1016/j.jspr.2024.102280
|
| [23] |
Rodriguez-Kabana, R., Kloepper, J., Weaver, C., & Robertson, D. (1993). Control of plant parasitic nematodes with furfural-a naturally occurring fumigant. Nematropica, 63–73.
|
| [24] |
Leesch, J. G. (1995). Fumigant action of acrolein on stored-product insects. Journal of Economic Entomology, 88(2), 326-330. https://doi.org/10.1093/jee/88.2.326
|
| [25] |
Zaebst, D. D., Blade, L. M., Burroughs, G. E., Morrelli-Schroht, P., & Woodfin, W. J. (1988). Phosphine exposures in grain elevators during fumigation with aluminum phosphide. Applied Industrial Hygiene, 3(5), 146-154. https://doi.org/10.1080/08828032.1988.10388548
|
| [26] |
Meikle, R. W., & Stewart, D. (1962). Structural fumigants, the residue potential of sulfuryl fluoride, methyl bromide, and methanesulfonyl fluoride in structural fumigations. Journal of Agricultural and Food Chemistry, 10(5), 393-397. https://doi.org/10.1021/jf60123a011
|
| [27] |
Baltaci, D., Klementz, D., Gerowitt, B., Drinkall, M. J., & Reichmuth, C. (2009). Lethal effects of sulfuryl fluoride on eggs of different ages and other life stages of the warehouse moth Ephestia elutella (Hübner). Journal of Stored Products Research, 45(1), 19-23. https://doi.org/10.1016/j.jspr.2008.06.006
|
| [28] |
Nayak, M. K., Daglish, G. J., Phillips, T. W., & Ebert, P. R. (2020). Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annual Review of Entomology, 65(1), 333-350. https://doi.org/10.1146/annurev-ento-011019-025047
|
| [29] |
Rosskopf, E. N., Chellemi, D. O., Kokalis-Burelle, N., & Church, G. T. (2005). Alternatives to methyl bromide: A Florida perspective. Plant Health Progress, 6(1), 19. https://doi.org/10.1094/PHP-2005-1027-01-RV
|
| [30] |
Taylor, R. W. D. (1994). Methyl bromide—Is there any future for this noteworthy fumigant? Journal of Stored Products Research, 30(4), 253-260. https://doi.org/10.1016/S0022-474X(94)90317-4
|
| [31] |
Yagi, K., Williams, J., Wang, N., & Cicerone, R. (1993). Agricultural soil fumigation as a source of atmospheric methyl bromide. Proceedings of the National Academy of Sciences of the United States of America, 90(18), 8420-8423. https://doi.org/10.1073/pnas.90.18.8420
|
| [32] |
Gan, J., Yates, S. R., Ernst, F. F., & Jury, W. A. (2000). Degradation and volatilization of the fumigant chloropicrin after soil treatment. Journal of Environmental Quality, 29(5), 1391-1397. https://doi.org/10.2134/jeq2000.00472425002900050004x
|
| [33] |
Desmarchelier, J. M., & Ren, Y.-L. (2020). Analysis of fumigant residues—A critical review. Journal of AOAC International, 82(6), 1261-1280. https://doi.org/10.1093/jaoac/82.6.1261
|
| [34] |
Fang, W., Wang, Q., Yan, D., Huang, B., Ren, Z., Wang, Q., Song, Z., Liu, X., Li, Y., Ouyang, C., & Cao, A. (2018). Environmental factors and soil amendment affect the decomposition rate of dazomet fumigant. Journal of Environmental Quality, 47(5), 1223-1231. https://doi.org/10.2134/jeq2018.01.0003
|
| [35] |
Triky-Dotan, S., Austerweil, M., Steiner, B., Peretz-Alon, Y., Katan, J., & Gamliel, A. (2007). Generation and dissipation of methyl isothiocyanate in soils following metam sodium fumigation: Impact on verticillium control and potato yield. Plant Disease, 91(5), 497-503. https://doi.org/10.1094/PDIS-91-5-0497
|
| [36] |
Chen, H., Gao, H., Fang, X., Ye, L., Zhou, Y., & Yang, H. (2015). Effects of allyl isothiocyanate treatment on postharvest quality and the activities of antioxidant enzymes of mulberry fruit. Postharvest Biology and Technology, 108, 61-67. https://doi.org/10.1016/j.postharvbio.2015.05.011
|
| [37] |
Wu, H., Zhang, G., Zeng, S., & Lin, K. (2009). Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy. Pest Management Science, 65(9), 1003-1008. https://doi.org/10.1002/ps.1786
|
| [38] |
Kenaga, E. E. (1957). Some biological, chemical and physical properties of sulfuryl fluoride as an insecticidal fumigant. Journal of Economic Entomology, 50(1), 1-6. https://doi.org/10.1093/jee/50.1.1
|
| [39] |
Cao, A., Guo, M., Yan, D., Mao, L., Wang, Q., Li, Y., Duan, X., & Wang, P. (2013). Evaluation of sulfuryl fluoride as a soil fumigant in China. Pest Management Science, 70(2), 219-227. https://doi.org/10.1002/ps.3535
|
| [40] |
Martin, F. N. (2003). Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annual Review of Phytopathology, 41(1), 325-350. https://doi.org/10.1146/annurev.phyto.41.052002.095514
|
| [41] |
Qiao, K., Wang, H. Y., Shi, X. B., Ji, X. X., & Wang, K. Y. (2010). Effects of 1,3-dichloropropene on nematode, weed seed viability and soil-borne pathogen. Crop Protection, 29(11), 1305-1310. https://doi.org/10.1016/j.cropro.2010.07.014
|
| [42] |
Montiel-Rozas, M. d. M., Hurtado-Navarro, M., Díez-Rojo, M. Á., Pascual, J. A., & Ros, M. (2019). Sustainable alternatives to 1,3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: Efficacy and effects on soil quality. Environmental Pollution, 247, 1046-1054. https://doi.org/10.1016/j.envpol.2019.01.042
|
| [43] |
Wang, D., Rosen, C., Kinkel, L., Cao, A., Tharayil, N., & Gerik, J. (2009). Production of methyl sulfide and dimethyl disulfide from soil-incorporated plant materials and implications for controlling soilborne pathogens. Plant and Soil, 324(1-2), 185-197. https://doi.org/10.1007/s11104-009-9943-y
|
| [44] |
Auger, J. (2004). Insecticidal and fungicidal potential of allium substances as biofumigants. Agondustria, 3, 367-370.
|
| [45] |
Luo, L., Ashworth, D., Dungan, R. S., Xuan, R., & Yates, S. R. (2010). Transport and fate of methyl iodide and its pest control in soils. Environmental Science & Technology, 44(16), 6275-6280. https://doi.org/10.1021/es1002814
|
| [46] |
Schneider, S. M., Rosskopf, E. N., Leesch, J. G., Chellemi, D. O., Bull, C. T., & Mazzola, M. (2003). United States department of agriculture-agricultural research service research on alternatives to methyl bromide: Pre-plant and post-harvest. Pest Management Science, 59(6‒7), 814-826. https://doi.org/10.1002/ps.728
|
| [47] |
Guo, M., Zheng, W., Papiernik, S. K., & Yates, S. R. (2004). Distribution and leaching of methyl iodide in soil following emulated shank and drip application. Journal of Environmental Quality, 33(6), 2149-2156. https://doi.org/10.2134/jeq2004.2149
|
| [48] |
Price, N. R. (1985). The mode of action of fumigants. Journal of Stored Products Research, 21(4), 157-164. https://doi.org/10.1016/0022-474x(85)90010-4
|
| [49] |
Stejskal, V., Douda, O., Zouhar, M., Manasova, M., Dlouhy, M., Simbera, J., & Aulicky, R. (2014). Wood penetration ability of hydrogen cyanide and its efficacy for fumigation of anoplophora glabripennis, Hylotrupes bajulus (Coleoptera), and Bursaphelenchus xylophilus (Nematoda). International Biodeterioration and Biodegradation, 86, 189-195. https://doi.org/10.1016/j.ibiod.2013.08.024
|
| [50] |
Hooper, J. L., Desmarchelier, J. M., Ren, Y., & Allen, S. E. (2003). Toxicity of cyanogen to insects of stored grain. Pest Management Science, 59(3), 353-357. https://doi.org/10.1002/ps.648
|
| [51] |
Yu, J., Baggio, J. S., Boyd, N. S., Freeman, J. H., & Peres, N. A. (2020). Evaluation of ethanedinitrile (EDN) as a preplant soil fumigant in Florida strawberry production. Pest Management Science, 76(3), 1134-1141. https://doi.org/10.1002/ps.5626
|
| [52] |
Mattner, S. W., Gounder, R. K., Mann, R. C., Porter, I. J., Matthiessen, J. N., Ren, Y. L., & Sarwar, M. (2006). Ethanedinitrile (C2N2) – A novel soil fumigant for strawberry production. ISHS Acta Horticulturae 708: V International Strawberry Symposium, 708, 197-204. https://doi.org/10.17660/ActaHortic.2006.708.32
|
| [53] |
Thalavaiasundaram, S., Ajwa, H., & Stevens, M. C. (2023). Dose-response of pests to ethanedinitrile dose-response of weed seeds, soil borne pathogens, and plant-parasitic nematodes to ethanedinitrile. Australasian Plant Pathology, 52(2), 133-143. https://doi.org/10.1007/s13313-023-00905-z
|
| [54] |
Hall, M. K. D., & Adlam, A. R. (2023). Comparison between the penetration characteristics of methyl bromide and ethanedinitrile through the bark of pine (Pinus radiata D.Don) logs. Pest Management Science, 79(4), 1442-1451. https://doi.org/10.1002/ps.7316
|
| [55] |
Ren, Y. (1999). Is carbonyl sulfide a precursor for carbon disulfide in vegetation and soil? Interconversion of carbonyl sulfide and carbon disulfide in fresh grain tissues in vitro. Journal of Agricultural and Food Chemistry, 47(5), 2141-2144. https://doi.org/10.1021/jf980838u
|
| [56] |
Muthu, M., Rajendran, S., Krishnamurthy, T. S., Narasimhan, K. S., Rangaswamy, J. R., Jayaram, M., & Majumder, S. K. (1984). Ethyl formate as a safe general fumigant. In B. E. Ripp (Ed.), Developments in agricultural engineering (Vol. 5, pp. 369-393). Elsevier. https://doi.org/10.1016/B978-0-444-42417-4.50037-2
|
| [57] |
Huang, Y., Li, H., Zhao, G., Bai, Q., Huang, M., Luo, D., & Li, X. (2023). Ethylicin inhibition of Xanthomonas oryzae pv. oryzicola in vitro and in vivo. Journal of Agricultural and Food Chemistry, 71(3), 1405-1416. https://doi.org/10.1021/acs.jafc.2c07327
|
| [58] |
Li, W., Ren, L., Li, Q., Zhang, D., Jin, X., Fang, W., Yan, D., Li, Y., Wang, Q., & Cao, A. (2023). Evaluation of ethylicin as a potential soil fumigant in commercial tomato production in China. Science of the Total Environment, 854, 158520. https://doi.org/10.1016/j.scitotenv.2022.158520
|
| [59] |
Cejpek, K., Valušek, J., & Velíšek, J. (2000). Reactions of allyl isothiocyanate with alanine, glycine, and several peptides in model systems. Journal of Agricultural and Food Chemistry, 48(8), 3560-3565. https://doi.org/10.1021/jf991019s
|
| [60] |
Qiao, K., Zhang, H., Wang, H., Ji, X., & Wang, K. (2011). Efficacy of aluminium phosphide as a soil fumigant against nematode and weed in tomato crop. Scientia Horticulturae, 130(3), 570-574. https://doi.org/10.1016/j.scienta.2011.08.007
|
| [61] |
Gómez-Tenorio, M. A., Tello, J. C., Zanón, M. J., & de Cara, M. (2018). Soil disinfestation with dimethyl disulfide (DMDS) to control Meloidogyne and Fusarium oxysporum f. sp. radicis-lycopersici in a tomato greenhouse. Crop Protection, 112, 133-140. https://doi.org/10.1016/j.cropro.2018.05.023
|
| [62] |
Dungan, R., Gan, J., & Yates, S. (2003). Accelerated degradation of methyl isothiocyanate in soil. Water, Air, and Soil Pollution, 142(1‒4), 299-310. https://doi.org/10.1023/A:1022092907878
|
| [63] |
Liu, J., Wang, X., Fang, W., Yan, D., Han, D., Huang, B., Zhang, Y., Li, Y., Ouyang, C., Cao, A., & Wang, Q. (2020). Soil properties, presence of microorganisms, application dose, soil moisture and temperature influence the degradation rate of allyl isothiocyanate in soil. Chemosphere, 244, 125540. https://doi.org/10.1016/j.chemosphere.2019.125540
|
| [64] |
Dungan, R. S., & Yates, S. R. (2003). Degradation of fumigant pesticides: 1,3-dichloropropene, methyl isothiocyanate, chloropicrin, and methyl bromide. Vadose Zone Journal, 2(3), 279-286. https://doi.org/10.2113/2.3.279
|
| [65] |
Gan, J., Papiernik, S. K., Yates, S. R., & Jury, W. A. (1999). Temperature and moisture effects on fumigant degradation in soil. Journal of Environmental Quality, 28(5), 1436-1441. https://doi.org/10.2134/jeq1999.00472425002800050007x
|
| [66] |
Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Reviews Microbiology, 9(4), 244-253. https://doi.org/10.1038/nrmicro2537
|
| [67] |
Hu, H.-M., Watson, J. A., Cribb, B. W., & Watson, G. S. (2011). Fouling of nanostructured insect cuticle: Adhesion of natural and artificial contaminants. Biofouling, 27(10), 1125-1137. https://doi.org/10.1080/08927014.2011.637187
|
| [68] |
Gan, J., & Yates, S. R. (1996). Degradation and phase partition of methyl iodide in soil. Journal of Agricultural and Food Chemistry, 44(12), 4001-4008. https://doi.org/10.1021/jf960413c
|
| [69] |
Sriranjini, V. R., & Rajendran, S. (2008). Sorption of sulfuryl fluoride by food commodities. Pest Management Science, 64(8), 873-879. https://doi.org/10.1002/ps.1577
|
| [70] |
Nakakita, H., & Kuroda, J. (1986). Differences in phosphine uptake between susceptible and resistant strains of insects. Journal of Pesticide Science, 11(1), 21-26. https://doi.org/10.1584/jpestics.11.21
|
| [71] |
Lin, C. M., Preston, J. F., & Wei, C. I. (2000). Antibacterial mechanism of allyl isothiocyanate. Journal of Food Protection, 63(6), 727-734. https://doi.org/10.4315/0362-028X-63.6.727
|
| [72] |
Zhang, D., Ren, L., Wang, Q., Wenjing, L., Song, Z., Jin, X., Fang, W., Yan, D., Li, Y., Wang, Q., He, L., & Cao, A. (2024). Systematic assessment of the antifungal mechanism of soil fumigant methyl isothiocyanate against Fusarium oxysporum. Environmental Pollution, 341, 122791. https://doi.org/10.1016/j.envpol.2023.122791
|
| [73] |
Tyagi, S., Lee, K. J., Shukla, P., & Chae, J. C. (2020). Dimethyl disulfide exerts antifungal activity against Sclerotinia minor by damaging its membrane and induces systemic resistance in host plants. Scientific Reports, 10(1), 6547. https://doi.org/10.1038/s41598-020-63382-0
|
| [74] |
Liu, T., Ren, X., Cao, G., Zhou, X., & Jin, L. (2021). Transcriptome analysis on the mechanism of ethylicin inhibiting Pseudomonas syringae pv. actinidiae on kiwifruit. Microorganisms, 9(4), 724. https://doi.org/10.3390/microorganisms9040724
|
| [75] |
Clemente, I., Aznar, M., Silva, F., & Nerín, C. (2016). Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innovative Food Science and Emerging Technologies, 36, 26-33. https://doi.org/10.1016/j.ifset.2016.05.013
|
| [76] |
Duan, X., Qin, D., Li, H., Zhang, T., Han, Y., Huang, Y. Q., He, D., Wu, K., Chai, X., & Chen, C. (2022). Study of antimicrobial activity and mechanism of vapor-phase cinnamaldehyde for killing Escherichia coli based on fumigation method. Frontiers in Nutrition, 9, 1040152. https://doi.org/10.3389/fnut.2022.1040152
|
| [77] |
de Souza, A., Narvencar, K. P., & Sindhoora, K. V. (2013). The neurological effects of methyl bromide intoxication. Journal of the Neurological Sciences, 335(1-2), 36-41. https://doi.org/10.1016/j.jns.2013.09.022
|
| [78] |
Nath, N. S., Bhattacharya, I., Tuck, A. G., Schlipalius, D. I., & Ebert, P. R. (2011). Mechanisms of phosphine toxicity. Journal of Toxicology, 2011, 494168-494169. https://doi.org/10.1155/2011/494168
|
| [79] |
Pesonen, M., & Vähäkangas, K. (2020). Chloropicrin-induced toxicity in the respiratory system. Toxicology Letters, 323, 10-18. https://doi.org/10.1016/j.toxlet.2020.01.022
|
| [80] |
Fang, W., Liu, X., Song, Z., Jin, X., Yan, D., Wang, Q., Li, Y., & Cao, A. (2022). Mechanism of the antifungal action of chloropicrin fumigation against Panax notoginseng root rot caused by Fusarium solani. Physiological and Molecular Plant Pathology, 121, 101859. https://doi.org/10.1016/j.pmpp.2022.101859
|
| [81] |
Calmes, B., N'Guyen, G., Dumur, J., Brisach, C. A., Campion, C., Iacomi, B., Pigné, S., Dias, E., Macherel, D., Guillemette, T., & Simoneau, P. (2015). Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Frontiers in Plant Science, 6, 414. https://doi.org/10.3389/fpls.2015.00414
|
| [82] |
Zhang, C., Ma, Z., Zhang, X., & Wu, H. (2017). Transcriptomic alterations in Sitophilus zeamais in response to allyl isothiocyanate fumigation. Pesticide Biochemistry and Physiology, 137, 62-70. https://doi.org/10.1016/j.pestbp.2016.10.001
|
| [83] |
Meikle, R. W., Stewart, D., & Globus, O. A. (1963). Fumigant mode of action, drywood termite metabolism of vikane fumigant as shown by labeled pool technique. Journal of Agricultural and Food Chemistry, 11(3), 226-230. https://doi.org/10.1021/jf60127a022
|
| [84] |
Derrick, M. R., Burgess, H. D., Baker, M. T., & Binnie, N. E. (1990). Sulfuryl fluoride (vikane): A review of its use as a fumigant. Journal of the American Institute for Conservation, 29(1), 77-90. https://doi.org/10.2307/3179591
|
| [85] |
Haritos, V. S., & Dojchinov, G. (2003). Cytochrome c oxidase inhibition in the rice weevil sitophilus oryzae (L.) by formate, the toxic metabolite of volatile alkyl formates. Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology, 136(2), 135-143. https://doi.org/10.1016/S1532-0456(03)00173-X
|
| [86] |
Ramadan, G. R. M., Zhu, K. Y., Abdelgaleil, S. A. M., Shawir, M. S., El-Bakary, A. S., Edde, P. A., & Phillips, T. W. (2020). Ethanedinitrile as a fumigant for Lasioderma serricorne (Coleoptera: Anobiidae), and Rhyzopertha dominica (Coleoptera: Bostrichidae): Toxicity and mode of action. Journal of Economic Entomology, 113(3), 1519-1527. https://doi.org/10.1093/jee/toz343
|
| [87] |
Wang, Q., Wang, X., Zhang, D., Fang, W., Li, Y., Cao, A., Wang, Q., & Yan, D. (2023). Transcriptome reveals the toxicity difference of dimethyl disulfide by contact and fumigation on Meloidogyne incognita through calcium channel-mediated oxidative phosphorylation. Journal of Hazardous Materials, 460, 132268. https://doi.org/10.1016/j.jhazmat.2023.132268
|
| [88] |
Deschamps, F., & Turpin, J. (1996). Methyl bromide intoxication during grain store fumigation. Occupational Medicine, 46(1), 89-90. https://doi.org/10.1093/occmed/46.1.89
|
| [89] |
Zhang, D., Ji, X., Meng, Z., Qi, W., & Qiao, K. (2019). Effects of fumigation with 1,3-dichloropropene on soil enzyme activities and microbial communities in continuous-cropping soil. Ecotoxicology and Environmental Safety, 169, 730-736. https://doi.org/10.1016/j.ecoenv.2018.11.071
|
| [90] |
Poelarends, G. J., Wilkens, M., Larkin, M. J., Elsas, J. D. v., & Janssen, D. B. (1998). Degradation of 1,3-dichloropropene by Pseudomonas cichorii 170. Applied and Environmental Microbiology, 64(8), 2931-2936. https://doi.org/10.1128/AEM.64.8.2931-2936.1998
|
| [91] |
Isshiki, K., Tokuoka, K., Mori, R., & Chiba, S. (1992). Preliminary examination of allyl isothiocyanate vapor for food preservation. Bioscience, Biotechnology, and Biochemistry, 56(9), 1476-1477. https://doi.org/10.1271/bbb.56.1476
|
| [92] |
Lin, C. M., Preston III, J. F., & Wei, C. I. (2000). Antibacterial mechanism of allyl isothiocyanate. Journal of Food Protection, 63(6), 727-734. https://doi.org/10.4315/0362-028x-63.6.727
|
| [93] |
Luciano, F. B., & Holley, R. A. (2009). Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli o157: H7. International Journal of Food Microbiology, 131(2‒3), 240-245. https://doi.org/10.1016/j.ijfoodmicro.2009.03.005
|
| [94] |
Bolter, C. J., & Chefurka, W. (1990). The effect of phosphine treatment on superoxide dismutase, catalase, and peroxidase in the granary weevil, Sitophilus granarius. Pesticide Biochemistry and Physiology, 36(1), 52-60. https://doi.org/10.1016/0048-3575(90)90020-3
|
| [95] |
Pearson, P. G., Slatter, J. G., Rashed, M. S., Han, D. H., & Baillie, T. A. (1991). Carbamoylation of peptides and proteins in vitro by S-(N-methylcarbamoyl)glutathione and S-(N-methylcarbamoyl)cysteine, two electrophilic S-linked conjugates of methyl isocyanate. Chemical Research in Toxicology, 4(4), 436-444. https://doi.org/10.1021/tx00022a007
|
| [96] |
Kawakishi, S., & Kaneko, T. (1985). Interaction of oxidized glutathione with allyl isothiocyanate. Phytochemistry, 24(4), 715-718. https://doi.org/10.1016/S0031-9422(00)84882-7
|
| [97] |
Kawakishi, S., & Kaneko, T. (1987). Interaction of proteins with allyl isothiocyanate. Journal of Agricultural and Food Chemistry, 35(1), 85-88. https://doi.org/10.1021/jf00073a020
|
| [98] |
Kawakishi, S., & Namiki, M. (1982). Oxidative cleavage of the disulfide bond of cystine by allyl isothiocyanate. Journal of Agricultural and Food Chemistry, 30(3), 618-620. https://doi.org/10.1021/jf00111a056
|
| [99] |
Murata, M., Yamashita, N., Inoue, S., & Kawanishi, S. (2000). Mechanism of oxidative DNA damage induced by carcinogenic allyl isothiocyanate. Free Radical Biology and Medicine, 28(5), 797-805. https://doi.org/10.1016/S0891-5849(00)00168-4
|
| [100] |
Graham, D. G., Amarnath, V., Valentine, W. M., Pyle, S. J., & Anthony, D. C. (1995). Pathogenetic studies of hexane and carbon disulfide neurotoxicity. Critical Reviews in Toxicology, 25(2), 91-112. https://doi.org/10.3109/10408449509021609
|
| [101] |
Dugravot, S., Grolleau, F., Macherel, D., Rochetaing, A., Hue, B., Stankiewicz, M., Huignard, J., & Lapied, B. (2003). Dimethyl disulfide exerts insecticidal neurotoxicity through mitochondrial dysfunction and activation of insect KATP channels. Journal of Neurophysiology, 90(1), 259-270. https://doi.org/10.1152/jn.01096.2002
|
| [102] |
Gautier, H., Auger, J., Legros, C., & Lapied, B. (2007). Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide. Journal of Pharmacology and Experimental Therapeutics, 324(1), 149-159. https://doi.org/10.1124/jpet.107.128694
|
RIGHTS & PERMISSIONS
2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.