CRISPR/Cas: An emerging molecular technology for biological control of fall armyworm

Ehab El-Awaad , Hans Merzendorfer

New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e26

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e26 DOI: 10.1002/npp2.26
COMPREHENSIVE REVIEW

CRISPR/Cas: An emerging molecular technology for biological control of fall armyworm

Author information +
History +
PDF

Abstract

The fall armyworm, Spodoptera frugiperda, is a highly invasive pest that poses severe threats to food crop production worldwide. Several methods have been applied to control fall armyworm infestations, including egg parasitoids, chemical insecticides, and transgenic crops expressing Bacillus thuringiensis (Bt) toxins. However, the currently available control methods are either poorly effective or facing challenges such as resistance development and environmental concerns. The rapidly evolving molecular tools of genetic engineering, particularly clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas), have been increasingly utilized in recent years in attempts to develop novel pest management strategies and genetically resistant crops. CRISPR/Cas-based genome editing offers a precise and efficient molecular tool that has been used successfully in several functional genomic studies of the fall armyworm over the last few years. In this review, we summarize recent progress in using CRISPR/Cas for precise genome editing of the fall armyworm, enabling the targeted modification of key genes essential for the survival and propagation of the pest. The potential of the CRISPR/Cas system to develop insect-resistant crops and pest management approaches that can be integrated into the current management strategies of the pest is discussed.

Keywords

CRISPR/Cas / crop protection / fall armyworm / gene drive / genome editing / pest control

Cite this article

Download citation ▾
Ehab El-Awaad, Hans Merzendorfer. CRISPR/Cas: An emerging molecular technology for biological control of fall armyworm. New Plant Protection, 2025, 2(1): e26 DOI:10.1002/npp2.26

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Montezano, D. G., Specht, A., Sosa-Gómez, D. R., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. V., Peterson, J. A., & Hunt, T. E. (2018). Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2), 286-300. https://doi.org/10.4001/003.026.0286

[2]

Overton, K., Maino, J. L., Day, R., Umina, P. A., Bett, B., Carnovale, D., Ekesi, S., Meagher, R., & Reynolds, O. L. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. Crop Protection, 145, 105641. https://doi.org/10.1016/j.cropro.2021.105641

[3]

Kenis, M., Benelli, G., Biondi, A., Calatayud, P. A., Day, R., Desneux, N., Harrison, R. D., Kriticos, D., Rwomushana, I., van den Berg, J., Verheggen, F., Zhang, Y. J., Agboyi, L. K., Ahissou, R. B., Ba, M. N., & Wu, K. M. (2023). Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomologia Generalis, 43(2), 187-241. https://doi.org/10.1127/entomologia/2022/1659

[4]

Sisay, B., Simiyu, J., Mendesil, E., Likhayo, P., Ayalew, G., Mohamed, S., Subramanian, S., & Tefera, T. (2019). Fall armyworm, Spodoptera frugiperda infestations in East Africa: Assessment of damage and parasitism. Insects, 10(7), 195. https://doi.org/10.3390/insects10070195

[5]

Andrews, K. L. (1980). The whorlworm, Spodoptera frugiperda, in central America and neighboring areas. Florida Entomologist, 63(4), 456-467. https://doi.org/10.2307/3494530

[6]

Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., & Tamò, M. (2016). First report of outbreaks of the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS One, 11(10), e0165632. https://doi.org/10.1371/journal.pone.0165632

[7]

Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafá, G., & Crozier, J. (2017). Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Scientific Reports, 7(1), 4103. https://doi.org/10.1038/s41598-017-04238-y

[8]

Zhou, Y., Wu, Q. L., Zhang, H. W., & Wu, K. M. (2021). Spread of invasive migratory pest Spodoptera frugiperda and management practices throughout China. Journal of Integrative Agriculture, 20(3), 637-645. https://doi.org/10.1016/S2095-3119(21)63621-3

[9]

Shylesha, A. N., Jalali, S. K., Gupta, A., Varshney, R., Venkatesan, T., Shetty, P., Ojha, R., Ganiger, P. C., Navik, O., Subaharan, K., Bakthavatsalam, N., & Ballal, C. R. (2018). Studies on new invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. Journal of Biological Control, 32(3), 1-7. https://doi.org/10.18311/jbc/2018/21707

[10]

Qi, G. J., Ma, J., Wan, J., Ren, Y. L., McKirdy, S., Hu, G., & Zhang, Z. F. (2021). Source regions of the first immigration of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) invading Australia. Insects, 12(12), 1104. https://doi.org/10.3390/insects12121104

[11]

Dahi, H. F., Salem, S. A. R., Gamil, W. E., & Mohamed, H. O. (2020). Heat requirements for the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) as a new invasive pest in Egypt. Egyptian Academic Journal of Biological Sciences. A, Entomology, 13(4), 73-85. https://doi.org/10.21608/eajbsa.2020.120603

[12]

Jing, D. P., Guo, J. F., Jiang, Y. Y., Zhao, J. Z., Sethi, A., He, K. L., & Wang, Z. Y. (2020). Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Science, 27(4), 780-790. https://doi.org/10.1111/1744-7917.12700

[13]

Tonğa, A. (2023). The invasion of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) toward Southeastern Türkiye. Şırnak Üniversitesi Fen Bilimleri Dergisi, 4(1), 53-59. https://dergipark.org.tr/en/pub/sufbd/issue/81418/1396936

[14]

Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in control strategies against Spodoptera frugiperda. A review. Molecules, 26(18), 5587. https://doi.org/10.3390/molecules26185587

[15]

Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J., & Jairam, S. (2016). Modeling seasonal migration of fall armyworm moths. International Journal of Biometeorology, 60(2), 255-267. https://doi.org/10.1007/s00484-015-1022-x

[16]

Yu, S. J. (1991). Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry and Physiology, 39(1), 84-91. https://doi.org/10.1016/0048-3575(91)90216-9

[17]

Pashley, D. P. (1986). Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex? Annals of the Entomological Society of America, 79(6), 898-904. https://doi.org/10.1093/aesa/79.6.898

[18]

Dumas, P., Legeai, F., Lemaitre, C., Scaon, E., Orsucci, M., Labadie, K., Gimenez, S., Clamens, A. L., Henri, H., Vavre, F., Aury, J. M., Fournier, P., Kergoat, G. J., & d’Alençon, E. (2015). Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species? Genetica, 143(3), 305-316. https://doi.org/10.1007/s10709-015-9829-2

[19]

Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Early, R., Godwin, J., Gomez, J., Moreno, P. G., Murphy, S. T., Oppong-Mensah, B., Phiri, N., Pratt, C., Silvestri, S., & Witt, A. (2017). Fall armyworm: Impacts and implications for Africa. Outlooks on Pest Management, 28(5), 196-201. https://doi.org/10.1564/v28_oct_02

[20]

Hruska, A. J. (2019). Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Reviews, 14, 1-11. https://doi.org/10.1079/pavsnnr201914043

[21]

Prasanna, B. M., Huesing, J. E., Eddy, R., & Peschke, V. M. (2018). Fall armyworm in Africa: A guide for integrated pest management (1st ed.). CIMMYT.

[22]

Van den Berg, J., & du Plessis, H. (2022). Chemical control and insecticide resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Economic Entomology, 115(6), 1761-1771. https://doi.org/10.1093/jee/toac108

[23]

Cai, Y., Chen, H., Hu, M., Wang, X., & Zhang, L. (2024). Discovery of novel potential insecticide-resistance mutations in Spodoptera frugiperda. Insects, 15(3), 186. https://doi.org/10.3390/insects15030186

[24]

Carvalho, R. A., Omoto, C., Field, L. M., Williamson, M. S., & Bass, C. (2013). Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One, 8(4), e62268. https://doi.org/10.1371/journal.pone.0062268

[25]

Sparks, T. C., Crossthwaite, A. J., Nauen, R., Banba, S., Cordova, D., Earley, F., Ebbinghaus-Kintscher, U., Fujioka, S., Hirao, A., Karmon, D., Kennedy, R., Nakao, T., Popham, H. J. R., Salgado, V., Watson, G. B., Wedel, B. J., & Wessels, F. J. (2020). Insecticides, biologics and nematicides: Updates to IRAC's mode of action classification - a tool for resistance management. Pesticide Biochemistry and Physiology, 167, 104587. https://doi.org/10.1016/j.pestbp.2020.104587

[26]

Gimenez, S., Abdelgaffar, H., Goff, G. L., Hilliou, F., Blanco, C. A., Hänniger, S., Bretaudeau, A., Legeai, F., Nègre, N., Jurat-Fuentes, J. L., d'Alençon, E., & Nam, K. (2020). Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Communications Biology, 3(1), 664. https://doi.org/10.1038/s42003-020-01382-6

[27]

Gui, F., Lan, T., Zhao, Y., Guo, W., Dong, Y., Fang, D., Liu, H., Li, H., Wang, H., Hao, R., Cheng, X., Li, Y., Yang, P., Sahu, S. K., Chen, Y., Cheng, L., He, S., Liu, P., Fan, G., … Kang, L. (2022). Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein & Cell, 13(7), 513-531. https://doi.org/10.1007/s13238-020-00795-7

[28]

Yu, S. J., Nguyen, S. N., & Abo-Elghar, G. E. (2003). Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry and Physiology, 77(1), 1-11. https://doi.org/10.1016/S0048-3575(03)00079-8

[29]

Blanco, C. A., Pellegaud, J. G., Nava-Camberos, U., Lugo-Barrera, D., Vega-Aquino, P., Coello, J., Terán-Vargas, A. P., & Vargas-Camplis, J. (2014). Maize pests in Mexico and challenges for the adoption of integrated pest management programs. Journal of Integrated Pest Management, 5(4), E1-E9. https://doi.org/10.1603/ipm14006

[30]

Fotso Kuate, A., Hanna, R., Doumtsop Fotio, A. R. P., Abang, A. F., Nanga, S. N., Ngatat, S., Tindo, M., Masso, C., Ndemah, R., Suh, C., & Fiaboe, K. K. M. (2019). Spodoptera frugiperda smith (Lepidoptera: Noctuidae) in Cameroon: Case study on its distribution, damage, pesticide use, genetic differentiation and host plants. PLoS One, 14(4), e0215749. https://doi.org/10.1371/journal.pone.0215749

[31]

Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2021). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207-221. https://doi.org/10.1016/j.jare.2020.10.003

[32]

Mehlhorn, S., Hunnekuhl, V. S., Geibel, S., Nauen, R., & Bucher, G. (2021). Establishing rnai for basic research and pest control and identification of the most efficient target genes for pest control: A brief guide. Frontiers in Zoology, 18(1), 60. https://doi.org/10.1186/s12983-021-00444-7

[33]

Grilli, S., Galizi, R., & Taxiarchi, C. (2021). Genetic technologies for sustainable management of insect pests and disease vectors. Sustainability, 13(10), 5653. https://doi.org/10.3390/su13105653

[34]

Reid, W., & O’Brochta, D. A. (2016). Applications of genome editing in insects. Current Opinion in Insect Science, 13, 43-54. https://doi.org/10.1016/j.cois.2015.11.001

[35]

Banerjee, S., Gupta, S., Raj, R., Kaushal, U., Kaur, G., & Gharde, S. K. (2023). CRISPR-Cas9 technology: Mechanism and its application in the field of entomology. Journal of Advanced Zoology, 44(5), 179-193. https://doi.org/10.17762/jaz.v44i5.2642

[36]

Gouda, M. N. R., Jeevan, H., & Shashank, H. G. (2023). Crispr/Cas9: A cutting-edge solution for combatting the fall armyworm, Spodoptera frugiperda. Molecular Biology Reports, 51(1), 13. https://doi.org/10.1007/s11033-023-08986-1

[37]

Han, W. K., Tang, F. X., Gao, H. L., Wang, Y., Yu, N., Jiang, J. J., & Liu, Z. W. (2023). Co-CRISPR: A valuable toolkit for mutation enrichment in the gene editing of Spodoptera frugiperda. Insect Science, 30(3), 625-636. https://doi.org/10.1111/1744-7917.13122

[38]

Kebede, M., & Fite, T. (2022). RNA interference (RNAi) applications to the management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): Its current trends and future prospects. Frontiers in Molecular Biosciences, 9, 944774. https://doi.org/10.3389/fmolb.2022.944774

[39]

Zhu, K. Y., & Palli, S. R. (2020). Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 65(1), 293-311. https://doi.org/10.1146/annurev-ento-011019-025224

[40]

Gilles, A. F., & Averof, M. (2014). Functional genetics for all: Engineered nucleases, CRISPR and the gene editing revolution. EvoDevo, 5(1), 43. https://doi.org/10.1186/2041-9139-5-43

[41]

Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096

[42]

Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9(1), 1911. https://doi.org/10.1038/s41467-018-04252-2

[43]

Taning, C. N. T., Van Eynde, B., Yu, N., Ma, S., & Smagghe, G. (2017). CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. Journal of Insect Physiology, 98, 245-257. https://doi.org/10.1016/j.jinsphys.2017.01.007

[44]

Islam, T. (2019). CRISPR-Cas technology in modifying food crops. CAB Reviews, 14, 050. https://doi.org/10.1079/pavsnnr201914050

[45]

Epinat, J. C., Arnould, S., Chames, P., Rochaix, P., Desfontaines, D., Puzin, C., Patin, A., Zanghellini, A., Pâques, F., & Lacroix, E. (2003). A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Research, 31(11), 2952-2962. https://doi.org/10.1093/nar/gkg375

[46]

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636-646. https://doi.org/10.1038/nrg2842

[47]

Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., Meng, X., Paschon, D. E., Leung, E., Hinkley, S. J., Dulay, G. P., Hua, K. L., Ankoudinova, I., Cost, G. J., Urnov, F. D., Zhang, H. S., Holmes, M. C., Zhang, L., Gregory, P. D., & Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29(2), 143-148. https://doi.org/10.1038/nbt.1755

[48]

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. https://doi.org/10.1126/science.1225829

[49]

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823. https://doi.org/10.1126/science.1231143

[50]

Verma, V., Negi, S., Kumar, P., & Srivastava, D. K. (2021). Global status of genetically modified crops. In D. Kumar Srivastava, A. Kumar Thakur, & P. Kumar (Eds.), Agricultural biotechnology: Latest research and trends (pp. 305-322). Springer Nature. https://doi.org/10.1007/978-981-16-2339-4_13

[51]

Abbas, M. S. T. (2018). Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egyptian Journal of Biological Pest Control, 28(1), 52. https://doi.org/10.1186/s41938-018-0051-2

[52]

Zhao, S., Yang, X., Liu, D., Sun, X., Li, G., & Wu, K. (2023). Performance of the domestic Bt corn event expressing pyramided Cry1Ab and vVip3Aa19 against the invasive (J. E. Smith) in China. Pest Management Science, 79(3), 1018-1029. https://doi.org/10.1002/ps.7273

[53]

Li, Y., Wang, Z., & Romeis, J. (2021). Managing the invasive fall armyworm through biotech crops: A Chinese perspective. Trends in Biotechnology, 39(2), 105-107. https://doi.org/10.1016/j.tibtech.2020.07.001

[54]

Farias, J. R., Andow, D. A., Horikoshi, R. J., Sorgatto, R. J., Fresia, P., dos Santos, A. C., & Omoto, C. (2014). Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Protection, 64, 150-158. https://doi.org/10.1016/j.cropro.2014.06.019

[55]

Li, G., Reisig, D., Miao, J., Gould, F., Huang, F., & Feng, H. (2016). Frequency of Cry1F non-recessive resistance alleles in North Carolina field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS One, 11(4), e0154492. https://doi.org/10.1371/journal.pone.0154492

[56]

Storer, N. P., Babcock, J. M., Schlenz, M., Meade, T., Thompson, G. D., Bing, J. W., & Huckaba, R. M. (2010). Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. Journal of Economic Entomology, 103(4), 1031-1038. https://doi.org/10.1603/ec10040

[57]

Chandrasena, D. I., Signorini, A. M., Abratti, G., Storer, N. P., Olaciregui, M. L., Alves, A. P., & Pilcher, C. D. (2018). Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Management Science, 74(3), 746-754. https://doi.org/10.1002/ps.4776

[58]

Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., Qiu, J. L., & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686-688. https://doi.org/10.1038/nbt.2650

[59]

Li, Y., Hallerman, E. M., Wu, K., & Peng, Y. (2020). Insect-resistant genetically engineered crops in China: Development, application, and prospects for use. Annual Review of Entomology, 65(1), 273-292. https://doi.org/10.1146/annurev-ento-011019-025039

[60]

Kumari, R., Saha, T., Kumar, P., & Singh, A. K. (2024). CRISPR/Cas9-mediated genome editing technique to control fall armyworm (Spodoptera frugiperda) in crop plants with special reference to maize. Physiology and Molecular Biology of Plants, 30(7), 1161-1173. https://doi.org/10.1007/s12298-024-01486-x

[61]

Chen, Y., Ni, X., & Buntin, G. D. (2009). Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm. Journal of Chemical Ecology, 35(3), 297-306. https://doi.org/10.1007/s10886-009-9600-1

[62]

Ni, X., Chen, Y., Hibbard, B. E., Wilson, J. P., Williams, W. P., Buntin, G. D., Ruberson, J. R., & Li, X. (2011). Foliar resistance to fall armyworm in corn germplasm lines that confer resistance to root- and ear-feeding insects. Florida Entomologist, 94(4), 971-981. https://www.jstor.org/stable/23065855

[63]

Alvarez, M. d. P., & de Miranda Filho, J. B. (2002). Diallel crossing among maize populations for resistance to fall armyworm. Scientia Agricola, 59(4), 731-741. https://doi.org/10.1590/s0103-90162002000400017

[64]

Kasoma, C., Shimelis, H., Laing, M., Shayanowako, A. I. T., & Mathew, I. (2020). Screening of inbred lines of tropical maize for resistance to fall armyworm, and for yield and yield-related traits. Crop Protection, 136, 105218. https://doi.org/10.1016/j.cropro.2020.105218

[65]

Cardi, T., Murovec, J., Bakhsh, A., Boniecka, J., Bruegmann, T., Bull, S. E., Eeckhaut, T., Fladung, M., Galovic, V., Linkiewicz, A., Lukan, T., Mafra, I., Michalski, K., Kavas, M., Nicolia, A., Nowakowska, J., Sági, L., Sarmiento, C., Yıldırım, K., … Van Laere, K. (2023). CRISPR/Cas-mediated plant genome editing: Outstanding challenges a decade after implementation. Trends in Plant Science, 28(10), 1144-1165. https://doi.org/10.1016/j.tplants.2023.05.012

[66]

Yang, L., Machin, F., Wang, S., Saplaoura, E., & Kragler, F. (2023). Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nature Biotechnology, 41(7), 958-967. https://doi.org/10.1038/s41587-022-01585-8

[67]

Zhu, G. H., Chereddy, S. C. R. R., Howell, J. L., & Palli, S. R. (2020). Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. Insect Biochemistry and Molecular Biology, 122, 103373. https://doi.org/10.1016/j.ibmb.2020.103373

[68]

Wu, K., Shirk, P. D., Taylor, C. E., Furlong, R. B., Shirk, B. D., Pinheiro, D. H., & Siegfried, B. D. (2018). CRISPR/Cas9 mediated knockout of the abdominal-a homeotic gene in fall armyworm moth (Spodoptera frugiperda). PLoS One, 13(12), e0208647. https://doi.org/10.1371/journal.pone.0208647

[69]

Gu, J., Wang, J., Bi, H., Li, X., Merchant, A., Zhang, P., Zhang, Q., & Zhou, X. (2022). CRISPR/Cas 9-mediated mutagenesis of sex-specific doublesex splicing variants leads to sterility in Spodoptera frugiperda, a global invasive pest. Cells, 11(22), 3557. https://doi.org/10.3390/cells11223557

[70]

Sun, H., Bu, L. A., Su, S.-C., Guo, D., Gao, C. F., & Wu, S. F. (2023). Knockout of the odorant receptor co-receptor, orco, impairs feeding, mating and egg-laying behavior in the fall armyworm Spodoptera frugiperda. Insect Biochemistry and Molecular Biology, 152, 103889. https://doi.org/10.1016/j.ibmb.2022.103889

[71]

Shi, T., Tang, P., Wang, X., Yang, Y., & Wu, Y. (2022). CRISPR-mediated knockout of nicotinic acetylcholine receptor (nAChR) α6 subunit confers high levels of resistance to spinosyns in Spodoptera frugiperda. Pesticide Biochemistry and Physiology, 187, 105191. https://doi.org/10.1016/j.pestbp.2022.105191

[72]

Ashok, K., Bhargava, C. N., Asokan, R., Pradeep, C., Pradhan, S. K., Kennedy, J. S., Balasubramani, V., Murugan, M., Jayakanthan, M., Geethalakshmi, V., & Manamohan, M. (2023). CRISPR/Cas9 mediated editing of pheromone biosynthesis activating neuropeptide (PBAN) gene disrupts mating in the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). 3 Biotech, 13(11), 370. https://doi.org/10.1007/s13205-023-03798-3

[73]

Ashok, K., Bhargava, C. N., Asokan, R., Pradeep, C., Kennedy, J. S., Manamohan, M., & Rai, A. (2023). CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). International Journal of Biological Macromolecules, 253, 126557. https://doi.org/10.1016/j.ijbiomac.2023.126557

[74]

Jin, M., Shan, Y., Peng, Y., Wang, W., Zhang, H., Liu, K., Heckel, D. G., Wu, K., Tabashnik, B. E., & Xiao, Y. (2023). Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proceedings of the National Academy of Sciences of the United States of America, 120(44), e2306932120. https://doi.org/10.1073/pnas.2306932120

[75]

Li, Q., Jin, M., Yu, S., Cheng, Y., Shan, Y., Wang, P., Yuan, H., & Xiao, Y. (2022). Knockout of the ABCB1 gene increases susceptibility to emamectin benzoate, beta-cypermethrin and chlorantraniliprole in Spodoptera frugiperda. Insects, 13(2), 137. https://doi.org/10.3390/insects13020137

[76]

Jin, M. H., Tao, J. H., Li, Q., Cheng, Y., Sun, X. X., Wu, K. M., & Xiao, Y. T. (2021). Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from bacillus thuringiensis in Spodoptera frugiperda. Journal of Integrative Agriculture, 20(3), 815-820. https://doi.org/10.1016/S2095-3119(19)62772-3

[77]

Jin, M., Yang, Y., Shan, Y., Chakrabarty, S., Cheng, Y., Soberón, M., Bravo, A., Liu, K., Wu, K., & Xiao, Y. (2021). Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J. E. Smith). Pest Management Science, 77(3), 1492-1501. https://doi.org/10.1002/ps.6170

[78]

Abdelgaffar, H., Perera, O. P., & Jurat-Fuentes, J. L. (2021). ABC transporter mutations in Cry1F-resistant fall armyworm (Spodoptera frugiperda) do not result in altered susceptibility to selected small molecule pesticides. Pest Management Science, 77(2), 949-955. https://doi.org/10.1002/ps.6106

[79]

Chen, X., & Palli, S. R. (2023). Development of multiple transgenic CRISPR/Cas9 methods for genome editing in the fall armyworm, Spodoptera frugiperda. Journal of Pest Science, 96(4), 1637-1650. https://doi.org/10.1007/s10340-022-01546-9

[80]

Han, W., Tang, F., Zhong, Y., Zhang, J., & Liu, Z. (2021). Identification of yellow gene family and functional analysis of Spodoptera frugiperda yellow-y by CRISPR/Cas9. Pesticide Biochemistry and Physiology, 178, 104937. https://doi.org/10.1016/j.pestbp.2021.104937

[81]

Eychenne, M., Girard, P.-A., Frayssinet, M., Lan, L., Pagès, S., Duvic, B., & Nègre, N. (2022). Mutagenesis of both prophenoloxidases in the fall armyworm induces major defects in metamorphosis. Journal of Insect Physiology, 139, 104399. https://doi.org/10.1016/j.jinsphys.2022.104399

[82]

Koo, J., Zhu, G.-H., & Palli, S. R. (2024). CRISPR/Cas 9 mediated dsRNase knockout improves RNAi efficiency in the fall armyworm. Pesticide Biochemistry and Physiology, 200, 105839. https://doi.org/10.1016/j.pestbp.2024.105839

[83]

Liu, Z., Liao, C., Zou, L., Jin, M., Shan, Y., Quan, Y., Yao, H., Zhang, L., Wang, P., Liu, Z., Wang, N., Li, A., Liu, K., Tabashnik, B. E., Heckel, D. G., Wu, K., & Xiao, Y. (2024). Retrotransposon-mediated disruption of a chitin synthase gene confers insect resistance to Bacillus thuringiensis Vip3Aa toxin. PLoS Biology, 22(7), e3002704. https://doi.org/10.1371/journal.pbio.3002704

[84]

Salum, Y. M., Yin, A., Zaheer, U., Liu, Y., Guo, Y., & He, W. (2024). CRISPR/Cas 9-based genome editing of fall armyworm (Spodoptera frugiperda): Progress and prospects. Biomolecules, 14(9), 1074. https://doi.org/10.3390/biom14091074

[85]

Zhao, Y., Li, L., Wei, L., Wang, Y., & Han, Z. (2024). Advancements and future prospects of CRISPR-Cas-based population replacement strategies in insect pest management. Insects, 15(9), 653. https://doi.org/10.3390/insects15090653

[86]

Burt, A. (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings Biological sciences, 270(1518), 921-928. https://doi.org/10.1098/rspb.2002.2319

[87]

Bier, E. (2022). Gene drives gaining speed. Nature Reviews Genetics, 23(1), 5-22. https://doi.org/10.1038/s41576-021-00386-0

[88]

Naidoo, K., & Oliver, S. V. (2024). Gene drives: An alternative approach to malaria control? Gene Therapy, 32(1), 25-37. https://doi.org/10.1038/s41434-024-00468-8

[89]

Chae, D., Lee, J., Lee, N., Park, K., Moon, S. J., & Kim, H. H. (2020). Chemical controllable gene drive in Drosophila. ACS Synthetic Biology, 9(9), 2362-2377. https://doi.org/10.1021/acssynbio.0c00117

[90]

Guichard, A., Haque, T., Bobik, M., Xu, X.-R. S., Klanseck, C., Kushwah, R. B. S., Berni, M., Kaduskar, B., Gantz, V. M., & Bier, E. (2019). Efficient allelic-drive in Drosophila. Nature Communications, 10(1), 1640. https://doi.org/10.1038/s41467-019-09694-w

[91]

Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E., & James, A. A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences of the United States of America, 112(49), E6736-E6743. https://doi.org/10.1073/pnas.1521077112

[92]

Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., Russell, S., Burt, A., Windbichler, N., Crisanti, A., & Nolan, T. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 34(1), 78-83. https://doi.org/10.1038/nbt.3439

[93]

Kyrou, K., Hammond, A. M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A. K., Nolan, T., & Crisanti, A. (2018). A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology, 36(11), 1062-1066. https://doi.org/10.1038/nbt.4245

[94]

Reavey, C. E., Walker, A. S., Joyce, S. P., Broom, L., Willse, A., Ercit, K., Poletto, M., Barnes, Z. H., Marubbi, T., Troczka, B. J., Treanor, D., Beadle, K., Granville, B., de Mello, V., Teal, J., Sulston, E., Ashton, A., Akilan, L., Naish, N., … Matzen, K. J. (2022). Self-limiting fall armyworm: A new approach in development for sustainable crop protection and resistance management. BMC Biotechnology, 22(1), 5. https://doi.org/10.1186/s12896-022-00735-9

[95]

Zhang, L., & Reed, R. D. (2017). A practical guide to CRISPR/Cas9 genome editing in Lepidoptera. In T. Sekimura & H. Nijhout (Eds.), Diversity and evolution of butterfly wing patterns (pp. 155-172). Springer. https://doi.org/10.1007/978-981-10-4956-9_8

[96]

Chen, P. J., & Liu, D. R. (2023). Prime editing for precise and highly versatile genome manipulation. Nature Reviews Genetics, 24(3), 161-177. https://doi.org/10.1038/s41576-022-00541-1

[97]

Chaverra-Rodriguez, D., Macias, V. M., Hughes, G. L., Pujhari, S., Suzuki, Y., Peterson, D. R., Kim, D., McKeand, S., & Rasgon, J. L. (2018). Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nature Communications, 9(1), 3008. https://doi.org/10.1038/s41467-018-05425-9

[98]

Alallam, B., Altahhan, S., Taher, M., Mohd Nasir, M. H., & Doolaanea, A. A. (2020). Electrosprayed alginate nanoparticles as crispr plasmid DNA delivery carrier: Preparation, optimization, and characterization. Pharmaceuticals, 13(8), 158. https://doi.org/10.3390/ph13080158

[99]

Kaupbayeva, B., Tsoy, A., Safarova, Y., Nurmagambetova, A., Murata, H., Matyjaszewski, K., & Askarova, S. (2024). Unlocking genome editing: Advances and obstacles in CRISPR-Cas delivery technologies. Journal of Functional Biomaterials, 15(11), 324. https://doi.org/10.3390/jfb15110324

[100]

Rank, A. P., & Koch, A. (2021). Lab-to-field transition of RNA spray applications - How far are we? Frontiers in Plant Science, 12, 755203. https://doi.org/10.3389/fpls.2021.755203

[101]

Srivastav, A., Gupta, K., Chakraborty, D., Dandekar, P., & Jain, R. (2022). Efficiency of chitosan-coated PLGA nanocarriers for cellular delivery of siRNA and CRISPR-Cas9 complex. Journal of Pharmaceutical Innovation, 17(1), 180-193. https://doi.org/10.1007/s12247-020-09496-4

[102]

Gurusamy, D., Mogilicherla, K., & Palli, S. R. (2020). Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Archives of Insect Biochemistry and Physiology, 104(4), e21677. https://doi.org/10.1002/arch.21677

[103]

Mushtaq, M., Ahmad Dar, A., Skalicky, M., Tyagi, A., Bhagat, N., Basu, U., Bhat, B. A., Zaid, A., Ali, S., Dar, T. U., Rai, G. K., Wani, S. H., Habib-Ur-Rahman, M., Hejnak, V., Vachova, P., Brestic, M., Çığ, A., Çığ, F., Erman, M., & El Sabagh, A. (2021). CRISPR-based genome editing tools: Insights into technological breakthroughs and future challenges. Genes, 12(6), 797. https://doi.org/10.3390/genes12060797

[104]

Wada, N., Osakabe, K., & Osakabe, Y. (2022). Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems. Plant Physiology, 188(4), 1825-1837. https://doi.org/10.1093/plphys/kiac027

[105]

Movahedi, A., Aghaei-Dargiri, S., Li, H., Zhuge, Q., & Sun, W. (2023). CRISPR variants for gene editing in plants: Biosafety risks and future directions. International Journal of Molecular Sciences, 24(22), 16241. https://doi.org/10.3390/ijms242216241

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/