Midgut microbiota and associated metabolites played a synergistic role in the Vip3Aa19 toxicity in Spodoptera frugiperda

Dapeng Jing , Sivaprasath Prabu , Xiaodan Huang , Zhanfeng Yan , Yongjun Zhang , Zhenying Wang , Tiantao Zhang

New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e25

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e25 DOI: 10.1002/npp2.25
ORIGINAL PAPER

Midgut microbiota and associated metabolites played a synergistic role in the Vip3Aa19 toxicity in Spodoptera frugiperda

Author information +
History +
PDF

Abstract

Gut bacteria profoundly influence the physiology and ecology of insects. They may enter the hemocoel after the Bacillus thuringiensis (Bt) toxin impairs the midgut of larvae, potentially leading to sepsis. In our study, we found that antibiotic treatment, which led to a reduction in intestinal bacteria, significantly decreased the susceptibility of fall armyworm (FAW) larvae to the Vip3Aa19 protein. The 16S rRNA sequencing was conducted to analyze the gut microbiota associated with antibiotic treatment and the virulence of Vip3Aa19, and Enterococcus mundtii, Enterococcus faecalis, Enterococcus gallinarum, and Enterococcus casseliflavus were identified. Further studies indicated that E. mundtii and E. gallinarum, particularly the supernatants of these four Enterococcus species, exert a synergistic effect on the insecticidal capacity of Vip3Aa19 proteins. We selected three metabolites from the identified compounds produced by Enterococcus species and investigated their toxicity against FAW larvae. The results revealed that methyl indole-3-acetate, 3-methyloxindole, and 4-ethyl-2-methoxyphenol not only act as gastric poisons but also induce the death of hemocytes, which can accelerate the onset of septicemia. Our findings illuminate the significant role of insect gut microbiota and their metabolites in the context of Bt Vip3Aa19-killing pressure, providing insights into the importance of septicemia mediated by Bt toxins.

Keywords

apoptosis / Bacillus thuringiensis / gut microbiota / metabolites / Spodoptera frugiperda

Cite this article

Download citation ▾
Dapeng Jing, Sivaprasath Prabu, Xiaodan Huang, Zhanfeng Yan, Yongjun Zhang, Zhenying Wang, Tiantao Zhang. Midgut microbiota and associated metabolites played a synergistic role in the Vip3Aa19 toxicity in Spodoptera frugiperda. New Plant Protection, 2025, 2(1): e25 DOI:10.1002/npp2.25

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Muhammad, A., Habineza, P., Ji, T., Hou, Y., & Shi, Z. (2019). Intestinal microbiota confer protection by priming the immune system of red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Frontiers in Physiology, 10, 1303. https://doi.org/10.3389/fphys.2019.01303

[2]

Engel, P., & Moran, N. A. (2013). The gut microbiota of insects—diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699-735. https://doi.org/10.1111/1574-6976.12025

[3]

Lemaitre, B., & Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annual Review of Immunology, 25(1), 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615

[4]

Liu, Q. X., Su, Z. P., Liu, H. H., Lu, S. P., Ma, B., Zhao, Y., Hou, Y. M., & Shi, Z. H. (2021). The effect of gut bacteria on the physiology of red palm weevil, Rhynchophorus ferrugineus Olivier and their potential for the control of this pest. Insects, 12(7), 594. https://doi.org/10.3390/insects12070594

[5]

Xia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M., & You, M. (2018). Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology, 9, 25. https://doi.org/10.3389/fmicb.2018.00025

[6]

de Almeida, L. G., de Moraes, L. A. B., Trigo, J. R., Omoto, C., & Cônsoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS One, 12(3), e0174754. https://doi.org/10.1371/journal.pone.0174754

[7]

Li, S., Xu, X., Mandal, S., Shakeel, M., Hua, Y., Shoukat, R. F., Fu, D., & Jin, F. (2021). Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response. Environmental Pollution, 271, 116271. https://doi.org/10.1016/j.envpol.2020.116271

[8]

Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology, 11, 25. https://doi.org/10.3389/fendo.2020.00025

[9]

Shin, S. C., Kim, S. H., You, H., Kim, B., Kim, A. C., Lee, K. A., Yoon, J. H., Ryu, J. H., & Lee, W. J. (2011). Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science, 334(6056), 670-674. https://doi.org/10.1126/science.1212782

[10]

Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C., & Moran, N. A. (2017). Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences of the United States of America, 114(18), 4775-4780. https://doi.org/10.1073/pnas.1701819114

[11]

Li, Z., Quan, G., Jiang, X., Yang, Y., Ding, X., Zhang, D., Wang, X., Hardwidge, P. R., Ren, W., & Zhu, G. (2018). Effects of metabolites derived from gut microbiota and hosts on pathogens. Frontiers in Cellular and Infection Microbiology, 8, 314. https://doi.org/10.3389/fcimb.2018.00314

[12]

Broderick, N. A., Raffa, K. F., & Handelsman, J. (2006). Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15196-15199. https://doi.org/10.1073/pnas.0604865103

[13]

Johnston, P. R., & Crickmore, N. (2009). Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis toward the tobacco hornworm, Manduca sexta. Applied and Environmental Microbiology, 75(15), 5094-5099. https://doi.org/10.1128/AEM.00966-09

[14]

Raymond, B., Johnston, P. R., Wright, D. J., Ellis, R. J., Crickmore, N., & Bonsall, M. B. (2009). A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environmental Microbiology, 11(10), 2556-2563. https://doi.org/10.1111/j.1462-2920.2009.01980.x

[15]

van Frankenhuyzen, K., Liu, Y., & Tonon, A. (2010). Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. Journal of Invertebrate Pathology, 103(2), 124-131. https://doi.org/10.1016/j.jip.2009.12.008

[16]

Visweshwar, R., Sharma, H. C., Akbar, S. M., & Sreeramulu, K. (2015). Elimination of gut microbes with antibiotics confers resistance to Bacillus thuringiensis toxin proteins in Helicoverpa armigera (Hubner). Applied Biochemistry and Biotechnology, 177(8), 1621-1637. https://doi.org/10.1007/s12010-015-1841-6

[17]

Mason, K. L., Stepien, T. A., Blum, J. E., Holt, J. F., Labbe, N. H., Rush, J. S., Raffa, K. F., & Handelsman, J. (2011). From commensal to pathogen: Translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. mBio, 2(3), e11. https://doi.org/10.1128/mBio.00065-11

[18]

Caccia, S., Lelio, I. D., Storia, A. L., Marinelli, A., Varricchio, P., Franzetti, E., Banyuls, N., Tettammanti, G., Casartelli, M., Giordana, B., Ferre, J., Gigliotti, S., Erocolini, D., & Pennacchio, F. (2016). Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proceedings of the National Academy of Sciences of the United States of America, 113(34), 9486-9491. https://doi.org/10.1073/pnas.1521741113

[19]

Mason, C. J., Ray, S., Shikano, I., Peiffer, M., Jones, A. G., Luthe, D. S., Hoover, K., & Felton, G. W. (2019). Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proceedings of the National Academy of Sciences of the United States of America, 116(32), 15991-15996. https://doi.org/10.1073/pnas.1908748116

[20]

Huang, X., Jing, D., Prabu, S., Zhang, T., & Wang, Z. (2022). RNA interference of phenoloxidases of the fall armyworm, Spodoptera frugiperda, enhances susceptibility to Bacillus thuringiensis protein Vip3Aa19. Insects, 13(11), 1041. https://doi.org/10.3390/insects13111041

[21]

Liu, X., Liu, S., Bai, S., He, K., Zhang, Y., Dong, H., Zhang, T., & Wang, Z. (2024). Toxicity of Cry- and Vip3Aa-class proteins and their interactions against Spodoptera frugiperda (Lepidoptera: Noctuidae). Toxins, 16(4), 193. https://doi.org/10.3390/toxins16040193

[22]

He, K., Wang, Z., Wen, L., Bai, S., Ma, X., & Yao, Z. (2005). Determination of baseline susceptibility to Cry1Ab protein for Asian corn borer (Lep., Crambidae). Journal of Applied Entomology, 129(8), 407-412. https://doi.org/10.1111/j.1439-0418.2005.00989.x

[23]

Robertson, J., Russell, R., Preisler, H., & Savin, N. (2007). Bioassays with arthropods (2nd ed.). CRC Press. https://doi.org/10.1201/9781420004045

[24]

Prabu, S., Jing, D. P., Shabbir, M. Z., Yuan, W., Wang, Z., & He, K. (2020). Contribution of phenoloxidase activation mechanism to Bt insecticidal protein resistance in Asian corn borer. International Journal of Biological Macromolecules, 153, 88-99. https://doi.org/10.1016/j.ijbiomac.2020.03.003

[25]

Coleman, J. J., Ghosh, S., Okoli, I., & Mylonakis, E. (2011). Antifungal activity of microbial secondary metabolites. PLoS One, 6(9), e25321. https://doi.org/10.1371/journal.pone.0025321

[26]

Patil, C. D., Borase, H. P., Salunke, B. K., & Patil, S. V. (2013). Alteration in Bacillus thuringiensis toxicity by curing gut flora: Novel approach for mosquito resistance management. Parasitology Research, 112(9), 3283-3288. https://doi.org/10.1007/s00436-013-3507-z

[27]

Paramasiva, I., Sharma, H. C., & Krishnayya, P. V. (2014). Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera. BMC Microbiology, 14(1), 200. https://doi.org/10.1186/1471-2180-14-200

[28]

Abdelkefi-Mesrati, L., Boukedi, H., Dammak-Karray, M., Sellami-Boudawara, T., Jaoua, S., & Tounsi, S. (2011). Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Journal of Invertebrate Pathology, 106(2), 250-254. https://doi.org/10.1016/j.jip.2010.10.002

[29]

Mühlen, S., & Dersch, P. (2016). Anti-virulence strategies to target bacterial infections. Current Topics in Microbiology and Immunology, 398, 147-183. https://doi.org/10.1007/82_2015_490

[30]

Li, S., Xu, X., Mandal, S., Shakeel, M., Hua, Y., Shoukat, R. F., Fu, D., & Jin, F. L. (2021). Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response. Environmental Pollution, 271, 116271. https://doi.org/10.1016/j.envpol.2020.116271

[31]

Hillyer, J. F., Schmidt, S. L., & Christensen, B. M. (2003). Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell and Tissue Research, 313(1), 117-127. https://doi.org/10.1007/s00441-003-0744-y

[32]

Mollah, M. I., Yeasmin, F., & Kim, Y. (2020). Benzylideneacetone and other phenylethylamide bacterial metabolites induce apoptosis to kill insects. Journal of Asia-Pacific Entomology, 23(2), 449-457. https://doi.org/10.1016/j.aspen.2020.03.008

[33]

D'arcy, M. S. (2019). Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43(6), 582-592. https://doi.org/10.1002/cbin.11137

[34]

Balasubramanian, K., Mirnikjoo, B., & Schroit, A. (2007). Regulated externalization of phosphatidylserine at the cell surface: Implications for apoptosis. Journal of Biological Chemistry, 282(5), 18357-18364. https://doi.org/10.1074/jbc.M700202200

[35]

Cancino-Rodezno, A., Alexander, C., Villaseñor, R., Pacheco, S., Porta, H., Pauchet, Y., Soberón, M., Gill, S. S., & Bravo, A. (2010). The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 40(1), 58-63. https://doi.org/10.1016/j.ibmb.2009.12.010

[36]

You, H., Lee, W. J., & Lee, W. J. (2014). Homeostasis between gut-associated microorganisms and the immune system in Drosophila. Current Opinion in Immunology, 30, 48-53. https://doi.org/10.1016/j.coi.2014.06.006

[37]

Grizanova, E. V., Dubovskiy, I. M., Whitten, M. M., & Glupov, V. V. (2014). Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. Journal of Invertebrate Pathology, 119, 40-46. https://doi.org/10.1016/j.jip.2014.04.003

[38]

Li, S., Mandal, S., Xu, X., & Jin, F. (2020). The tripartite interaction of host immunity-Bacillus thuringiensis infection-gut microbiota. Toxins, 12(8), 514. https://doi.org/10.3390/toxins12080514

[39]

Lin, J., Yu, X. Q., Wang, Q., Tao, X., Li, J., Zhang, S., Xia, X., & You, M. (2020). Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth, Plutella xylostella. Developmental & Comparative Immunology, 107, 103661. https://doi.org/10.1016/j.dci.2020.103661

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/