Sensitive and portable intelligent detection of imidacloprid in agricultural products using smartphone-integrated test strips

Binbin Zhang , Wentao Zhang , Shi Li , Ning Zhang , Zhenjiang Liu , Jun Xu , Xiaohu Wu , Fengshou Dong , Yongquan Zheng , Xinglu Pan

New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e24

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e24 DOI: 10.1002/npp2.24
ORIGINAL PAPER

Sensitive and portable intelligent detection of imidacloprid in agricultural products using smartphone-integrated test strips

Author information +
History +
PDF

Abstract

The detection rate of imidacloprid (IMI) in agro-products are increasing annually, posing negative effects on food safety and human health. A sensitive and portable dual-mode lateral flow immunoassay (LFIA) method, combined with the smartphone, has been established to monitor the IMI residues in agro-products. Optimal detection conditions were achieved with 0.4 mg/mL of IMI coating antigen and 4 μg/mL of IMI monoclonal antibody. The limit of detection (LOD) for qualitative analysis with naked-eye observation was determined to be 25 ng/mL. For quantitative analysis, 20% inhibition concentration (IC20) was found to be 2.55 ng/mL, with a linear range (IC20–IC80) of 2.55–26.94 ng/mL. The recoveries and relative standard deviation (RSD) were in the ranges of 90.4%–103.2% and 2.0%–11.7%, respectively. There was a strong agreement between the results obtained from the established method and those from UHPLC-MS/MS, with the slope and coefficient of determination (R2) reaching to 1.091 and 0.9837, respectively. Overall, the proposed dual-mode LFIA method provides an efficient approach for on-site detection of IMI in agro-products.

Keywords

imidacloprid / lateral flow immunoassay / rapid detection / smartphone

Cite this article

Download citation ▾
Binbin Zhang, Wentao Zhang, Shi Li, Ning Zhang, Zhenjiang Liu, Jun Xu, Xiaohu Wu, Fengshou Dong, Yongquan Zheng, Xinglu Pan. Sensitive and portable intelligent detection of imidacloprid in agricultural products using smartphone-integrated test strips. New Plant Protection, 2025, 2(1): e24 DOI:10.1002/npp2.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen, H., Sun, W., Zhang, Z., Tao, Z., Qin, Y., Ding, Y., Wang, L., Wang, M., & Hua, X. (2021). Competitive immune-nanoplatforms with positive readout for the rapid detection of imidacloprid using gold nanoparticles. Microchimica Acta, 188(10), 356. https://doi.org/10.1007/s00604-021-05027-1

[2]

Du, M., Yang, Q., Liu, W., Ding, Y., Chen, H., Hua, X., & Wang, M. (2020). Development of immunoassays with high sensitivity for detecting imidacloprid in environment and agro-products using phage-borne peptides. Science of the Total Environment, 723, 137909. https://doi.org/10.1016/j.scitotenv.2020.137909

[3]

Liu, J., Zheng, Y., Dong, F., Li, Y., Wu, X., Pan, X., Zhang, Y., & Xu, J. (2023). Insight into the long-lasting control efficacy of neonicotinoid imidacloprid against wheat aphids during the entire growth period. Journal of Agricultural and Food Chemistry, 71(32), 12167-12176. https://doi.org/10.1021/acs.jafc.3c02899

[4]

Liu, J., Zhang, Y., Dong, F., Wu, X., Pan, X., Xu, J., & Zheng, Y. (2022). Trace determination of imidacloprid and its major metabolites in wheat-soil system. Journal of Separation Science, 45(18), 3567-3581. https://doi.org/10.1002/jssc.202200187

[5]

Craddock, H. A., Huang, D., Turner, P. C., Quirós-Alcalá, L., & Payne-Sturges, D. C. (2019). Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environmental Health, 18(1), 7. https://doi.org/10.1186/s12940-018-0441-7

[6]

Zhang, B., Li, S., Dong, F., Xu, J., Wu, X., Zheng, Y., & Pan, X. (2024). A sensitive fluoroimmunoassay for quantitative detection of imidacloprid based on quantum dot-streptavidin conjugate. Talanta, 275, 126128. https://doi.org/10.1016/j.talanta.2024.126128

[7]

Cui, K., Ning, M., Liang, J., Guan, S., Fang, L., Ding, R., Wang, J., Li, T., & Dong, Z. (2023). Pollution characteristics and non-dietary human cumulative risk assessment of neonicotinoids in vegetable greenhouse soils: A case study in Shandong Province, China. Journal of Soils and Sediments, 23(1), 331-343. https://doi.org/10.1007/s11368-022-03321-w

[8]

Wu, R. L., He, W., Li, Y. L., Li, Y. Y., Qin, Y. F., Meng, F. Q., Wang, L. G., & Xu, F. L. (2020). Residual concentrations and ecological risks of neonicotinoid insecticides in the soils of tomato and cucumber greenhouses in Shouguang, Shandong Province, East China. The Science of the Total Environment, 738, 140248. https://doi.org/10.1016/j.scitotenv.2020.140248

[9]

Al-Hawadi, J. S., Al-Sayaydeh, R. S., Al-Rawashdeh, Z. B., & Ayad, J. Y. (2023). Monitoring of imidacloprid residues in fresh fruits and vegetables from the central parts of Jordan. Heliyon, 9(11), e22136. https://doi.org/10.1016/j.heliyon.2023.e22136

[10]

Niaz, A., Sial, R. A., Yaseen, M., Mand, G. A., Javed, M. H., Ahmad, E., & Rahim, M. (2016). Determination of imidacloprid residues in rice from various districts of Punjab using high performance liquid chromatography. The Journal of Animal & Plant Sciences, 26(1), 170-176.

[11]

Zhang, Y., Wang, M., Silipunyo, T., Huang, H., Yin, Q., Han, B., & Wang, M. (2022). Risk assessment of triflumezopyrim and imidacloprid in rice through an evaluation of residual data. Molecules, 27(17), 5685. https://doi.org/10.3390/molecules27175685

[12]

Cui, K., Wu, X., Wei, D., Zhang, Y., Cao, J., Xu, J., Dong, F., Liu, X., & Zheng, Y. (2021). Health risks to dietary neonicotinoids are low for Chinese residents based on an analysis of 13 daily-consumed foods. Environment International, 149, 106385. https://doi.org/10.1016/j.envint.2021.106385

[13]

Cui, K., Wang, J., Ma, G., Guan, S., Liang, J., Fang, L., Ding, R., Li, T., Dong, Z., Wu, X., & Zheng, Y. (2024). Residue levels, processing factors and risk assessment of pesticides in ginger from market to table. Journal of Hazardous Materials, 470, 134268. https://doi.org/10.1016/j.jhazmat.2024.134268

[14]

Ma, C., Zhang, Q., Liu, C. H., & Wang, M. Y. (2022). Pesticide multi-residue analysis and short-term dietary risk assessment in bananas. Chinese Journal of Pesticide Science, 24(1), 161-167. https://doi.org/10.16801/j.issn.1008-7303.2021.0163

[15]

Elbaz, G. A., Zaazaa, H. E., Monir, H. H., Abd El Halim, L. M., & Atty, S. A. (2022). Nano eco-friendly voltammetric determination of pesticide, imidacloprid and its residues in thyme and guava leaves. Sustainable Chemistry and Pharmacy, 29, 100799. https://doi.org/10.1016/j.scp.2022.100799

[16]

Guo, J., Gao, Y., & Tian, Y. (2017). Research progress on imidacloprid exposure and genotoxity. Journal of Environmental & Occupational Medicine, 34(11), 1013-1018. https://doi.org/10.13213/j.cnki.jeom.2017.17422

[17]

Yigit, N., & Velioglu, Y. S. (2020). Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition, 60(21), 3622-3641. https://doi.org/10.1080/10408398.2019.1702501

[18]

Li, C., Zhu, H., Li, C., Qian, H., Yao, W., & Guo, Y. (2021). The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chemistry, 354, 129552. https://doi.org/10.1016/j.foodchem.2021.129552

[19]

Zhai, R., Chen, G., Liu, G., Huang, X., Xu, X., Li, L., Zhang, Y., Xu, D., & Abd El-Aty, A. M. (2023). Comparison of chemiluminescence enzyme immunoassay (Cl-ELISA) with colorimetric enzyme immunoassay (Co-ELISA) for imidacloprid detection in vegetables. Foods, 12(1), 196. https://doi.org/10.3390/foods12010196

[20]

Liu, X., Li, J., Huang, Y., Zhang, Z., Lin, Q., Xia, P., Kong, F., Qiu, J., Fang, S., & Hua, X. (2023). Rapid and sensitive detection of quizalofop-p-ethyl by gold nanoparticle-based lateral flow immunoassay in agriproducts and environmental samples. Science of the Total Environment, 857(Pt 1), 159427. https://doi.org/10.1016/j.scitotenv.2022.159427

[21]

Wu, Y., Li, J., Zhu, J., Zhang, Z., Zhang, S., Wang, M., & Hua, X. (2024). A rapid and sensitive gold nanoparticle-based lateral flow immunoassay for chlorantraniliprole in agricultural and environmental samples. Foods, 13(2), 205. https://doi.org/10.3390/foods13020205

[22]

Gao, J., Zhang, T., Fang, Y., Zhao, Y., Yang, M., Zhao, L., Li, Y., Huang, J., Zhu, G., & Guo, Y. (2024). On-site rapid detection of multiple pesticide residues in tea leaves by lateral flow immunoassay. Journal of Pharmaceutical Analysis, 14(2), 276-283. https://doi.org/10.1016/j.jpha.2023.09.011

[23]

Cheng, Y., Wu, A., Guo, L., Sun, M., Gao, R., Kuang, H., Xu, C., & Xu, L. (2023). Lateral flow immunoassay based on gold nanoparticles for rapid and sensitive detection of zoxamide in grape, tomato and cucumber samples. Food Chemistry, 426, 136533. https://doi.org/10.1016/j.foodchem.2023.136533

[24]

Lazo Jara, M. D., Contreras Alvarez, L. A., Guimaraes, M. C. C., Pereira Antunes, P. W., & de Oliveira, J. P. (2022). Lateral flow assay applied to pesticides detection: Recent trends and progress. Environmental Science and Pollution Research, 29(31), 46487-46508. https://doi.org/10.1007/s11356-022-20426-4

[25]

Zhang, Y., Wang, L., Wang, W.-L., Yang, C., Feng, Y., & Shi, X. (2021). Visual-afterglow dual-mode immunochromatographic strip for 17β-estradiol detection in milk. Talanta, 232, 122427. https://doi.org/10.1016/j.talanta.2021.122427

[26]

Tan, G., Zhao, Y., Wang, M., Chen, X., Wang, B., & Li, Q. X. (2020). Ultrasensitive quantitation of imidacloprid in vegetables by colloidal gold and time-resolved fluorescent nanobead traced lateral flow immunoassays. Food Chemistry, 311, 126055. https://doi.org/10.1016/j.foodchem.2019.126055

[27]

Hui, L., Ying, Y., Zhen, C., Guang-Yang, L., & Jing, W. (2022). Research progress on rapid detection technology based on smartphone and lateral flow immunoassay. Chinese Journal of Analytical Chemistry, 50(1), 1-11. https://doi.org/10.19756/j.issn.0253-3820.201488

[28]

Feng, J., Xue, Y., Wang, X., Song, Q., Wang, B., Ren, X., Zhang, L., & Liu, Z. (2022). Sensitive, simultaneous and quantitative detection of deoxynivalenol and fumonisin B1 in the water environment using lateral flow immunoassay integrated with smartphone. Science of the Total Environment, 834, 155354. https://doi.org/10.1016/j.scitotenv.2022.155354

[29]

Li, W., Wang, Z., Wang, X., Cui, L., Huang, W., Zhu, Z., & Liu, Z. (2023). Highly efficient detection of deoxynivalenol and zearalenone in the aqueous environment based on nanoenzyme-mediated lateral flow immunoassay combined with smartphone. Journal of Environmental Chemical Engineering, 11(5), 110494. https://doi.org/10.1016/j.jece.2023.110494

[30]

Li, D., Huang, M., Shi, Z., Huang, L., Jin, J., Jiang, C., Yu, W., Guo, Z., & Wang, J. (2022). Ultrasensitive competitive lateral flow immunoassay with visual semiquantitative inspection and flexible quantification capabilities. Analytical Chemistry, 94(6), 2996-3004. https://doi.org/10.1021/acs.analchem.1c05364

[31]

Kong, M. M., Yang, B., Gong, C. J., Wang, H., Li, X., Zhao, K. S., Li, J. J., Wu, F., Liu, X., & Hu, Z. (2017). Development of immunochromatographic colloidal gold test strip for rapid detection of Haemophilus influenzae in clinical specimens. Journal of Applied Microbiology, 123(1), 287-294. https://doi.org/10.1111/jam.13489

[32]

Sotnikov, D. V., Berlina, A. N., Ivanov, V. S., Zherdev, A. V., & Dzantiev, B. B. (2019). Adsorption of proteins on gold nanoparticles: One or more layers? Colloids and Surfaces B: Biointerfaces, 173, 557-563. https://doi.org/10.1016/j.colsurfb.2018.10.025

[33]

Lee, J. W., Choi, S. R., & Heo, J. H. (2021). Simultaneous stabilization and functionalization of gold nanoparticles via biomolecule conjugation: Progress and perspectives. ACS Applied Materials and Interfaces, 13(36), 42311-42328. https://doi.org/10.1021/acsami.1c10436

[34]

Liu, Y., Wu, A., Hu, J., Lin, M., Wen, M., Zhang, X., Xu, C., Hu, X., Zhong, J., Jiao, L., Xie, Y., Zhang, C., Yu, X., Liang, Y., & Liu, X. (2015). Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay. Analytical Biochemistry, 483, 7-11. https://doi.org/10.1016/j.ab.2015.04.022

[35]

Gao, S., Abd El-Aty, A. M., Xu, L., Zhao, J., Li, J., Lei, X., Zhao, Y., She, Y., Jin, F., Wang, J., Yuan, S., Jin, M., & Hammock, B. D. (2024). Rapid detection of prometryn residues in agricultural samples: Method comparison of the ic-elisa and colloidal gold immunochromatographic test strips. ACS Agricultural Science & Technology, 4(3), 345-355. https://doi.org/10.1021/acsagscitech.3c00490

[36]

Xu, S., Zhang, G., Fang, B., Xiong, Q., Duan, H., & Lai, W. (2019). Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. ACS Applied Materials and Interfaces, 11(34), 31283-31290. https://doi.org/10.1021/acsami.9b08789

[37]

Amini, M., Pourmand, M. R., Faridi-Majidi, R., Heiat, M., Mohammad Nezhady, M. A., Safari, M., Noorbakhshe, F., & Baharifar, H. (2020). Optimising effective parameters to improve performance quality in lateral flow immunoassay for detection of PBP2a in methicillin-resistant staphylococcus aureus (MRSA). Journal of Experimental Nanoscience, 15(1), 266-279. https://doi.org/10.1080/17458080.2020.1775197

[38]

Chao, M., Liu, L., Song, S., Wu, X., & Kuang, H. (2020). Development of a gold nanoparticle-based strip assay for detection of clopidol in the chicken. Food and Agricultural Immunology, 31(1), 489-500. https://doi.org/10.1080/09540105.2020.1737655

[39]

Dou, L., Zhao, B., Bu, T., Zhang, W., Huang, Q., Yan, L., Huang, L., Wang, Y., Wang, J., & Zhang, D. (2018). Highly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assay. Analytical and Bioanalytical Chemistry, 410(13), 3161-3170. https://doi.org/10.1007/s00216-018-1003-0

[40]

Liu, M. L., He, X. T., Xu, Z. L., Deng, H., Shen, Y. D., Luo, L., Shen, X., Chen, Z. J., Hammock, B., & Wang, H. (2023). Development of a biotinylated nanobody-based gold nanoparticle immunochromatographic assay for the detection of procymidone in crops. Journal of Agricultural and Food Chemistry, 71(35), 13137-13146. https://doi.org/10.1021/acs.jafc.3c03408

[41]

Suryoprabowo, S., Wu, A., Liu, L., Kuang, H., Xu, C., & Guo, L. (2023). A rapid immunochromatographic method based on gold nanoparticles for the determination of imidacloprid on fruits and vegetables. Foods, 12(3), 512. https://doi.org/10.3390/foods12030512

[42]

Wang, L., Cai, J., Wang, Y., Fang, Q., Wang, S., Cheng, Q., Du, D., Lin, Y., & Liu, F. (2014). A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchimica Acta, 181(13), 1565-1572. https://doi.org/10.1007/s00604-014-1247-0

[43]

Si, F., Zou, R., Jiao, S., Qiao, X., Guo, Y., & Zhu, G. (2018). Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples. Ecotoxicology and Environmental Safety, 148, 862-868. https://doi.org/10.1016/j.ecoenv.2017.11.062

[44]

Zhou, L., Yang, J., Tao, Z., Eremin, S. A., Hua, X., & Wang, M. (2020). Development of fluorescence polarization immunoassay for imidacloprid in environmental and agricultural samples. Frontiers in Chemistry, 8, 615594. https://doi.org/10.3389/fchem.2020.615594

[45]

Liu, Z., Liu, J., Wang, K., Li, W., Shelver, W. L., Li, Q. X., Li, J., & Xu, T. (2015). Selection of phage-displayed peptides for the detection of imidacloprid in water and soil. Analytical Biochemistry, 485, 28-33. https://doi.org/10.1016/j.ab.2015.05.014

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/