Metarhizium fungi as plant symbionts

Xingyuan Tang , Xinmiao Wang , Xianxian Cheng , Xinru Wang , Weiguo Fang

New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e23

PDF
New Plant Protection ›› 2025, Vol. 2 ›› Issue (1) : e23 DOI: 10.1002/npp2.23
COMPREHENSIVE REVIEW

Metarhizium fungi as plant symbionts

Author information +
History +
PDF

Abstract

Metarhizium fungi are pathogens of arthropods, with several early-diverged species infecting lizards or mushrooms. Most Metarhizium species are also beneficial plant symbionts, and they mainly colonize rhizosphere and rhizoplane with some strains colonizing leaves and stems. The development of Metarhizium and plant association commence either by the attachment of spores to roots or rhizosphere colonization. Rhizosphere hyphae are further attracted to roots by nutrient-rich root exudates, facilitating rhizoplane colonization. Both undifferentiated and differentiated (characterized by appressorial formation) hyphae can penetrate between root epidermal cells, with sporadical colonization. Plant-derived reactive oxygen species play a crucial role in limiting root cell colonization by Metarhizium. Metarhizium utilizes plant-derived sugars and fatty acids for the growth while transferring insect-derived nitrogen to the plants. Additionally, Metarhizium facilitates plant’s utilization of environmental phosphorus, zinc, and iron via increasing the bioavailability of these nutrients. Metarhizium colonization can improve plant resistance to herbivores, microbial pathogens, and abiotic stresses. Given their versatile benefits to plants, Metarhizium has been developed as insecticides, fertilizers, and plant immunity promoters. In addition to terrestrial ecosystems, recent studies report that Metarhizium also inhabits aquatic and wetland ecosystems, which could further enhance the understanding of their biology and ecology and widen their applications.

Keywords

endophytic fungi / entomopathogenic fungi / Metarhizium / symbiosis

Cite this article

Download citation ▾
Xingyuan Tang, Xinmiao Wang, Xianxian Cheng, Xinru Wang, Weiguo Fang. Metarhizium fungi as plant symbionts. New Plant Protection, 2025, 2(1): e23 DOI:10.1002/npp2.23

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

St Leger, R. J., & Wang, J. B. (2020). Metarhizium: Jack of all trades, master of many. Open Biology, 10(12), 200307. https://doi.org/10.1098/rsob.200307

[2]

Kepler, R. M., Humber, R. A., Bischoff, J. F., & Rehner, S. A. (2014). Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia, 106(4), 811-829. https://doi.org/10.3852/13-319

[3]

Sheng, H., McNamara, P. J., & St Leger, R. J. (2022). Metarhizium: An opportunistic middleman for multitrophic lifestyles. Current Opinion in Microbiology, 69, 102176. https://doi.org/10.1016/j.mib.2022.102176

[4]

Behie, S. W., Zelisko, P. M., & Bidochka, M. J. (2012). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science, 336(6088), 1576-1577. https://doi.org/10.1126/science.1222289

[5]

Bamisile, B. S., Senyo Akutse, K., Dash, C. K., Qasim, M., Ramos Aguila, L. C., Ashraf, H. J., Huang, W., Hussain, M., Chen, S., & Wang, L. (2020). Effects of seedling age on colonization patterns of Citrus limon plants by endophytic Beauveria bassiana and Metarhizium anisopliae and their influence on seedlings growth. Journal of Fungi, 6(1), 29. https://doi.org/10.3390/jof6010029

[6]

Jaber, L. R., & Enkerli, J. (2016). Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control, 103, 187-195. https://doi.org/10.1016/j.biocontrol.2016.09.008

[7]

Xiao, G., Ying, S. H., Zheng, P., Wang, Z. L., Zhang, S., Xie, X. Q., Shang, Y., St Leger, R. J., Zhao, G. P., Wang, C., & Feng, M. G. (2012). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports, 2(1), 483. https://doi.org/10.1038/srep00483

[8]

St. Leger, R. J. (2024). The evolution of complex Metarhizium-insect-plant interactions. Fungal Biology, 128(8), 2513-2528. https://doi.org/10.1016/j.funbio.2024.01.001

[9]

Guo, N., Qian, Y., Zhang, Q., Chen, X., Zeng, G., Zhang, X., Mi, W., Xu, C., St Leger, R. J., & Fang, W. (2017). Alternative transcription start site selection in Mr-OPY2 controls lifestyle transitions in the fungus Metarhizium robertsii. Nature Communications, 8(1), 1565. https://doi.org/10.1038/s41467-017-01756-1

[10]

Roberts, D. W., & St Leger, R. J. (2004). Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Advances in Applied Microbiology, 54, 1-70. https://doi.org/10.1016/S0065-2164(04)54001-7

[11]

Hu, G., & St Leger, R. J. (2002). Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Applied and Environmental Microbiology, 68(12), 6383-6387. https://doi.org/10.1128/AEM.68.12.6383-6387.2002

[12]

Behie, S. W., Moreira, C. C., Sementchoukova, I., Barelli, L., Zelisko, P. M., & Bidochka, M. J. (2017). Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nature Communications, 8(1), 14245. https://doi.org/10.1038/ncomms14245

[13]

Fang, W., & St Leger, R. J. (2010). Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiology, 154(3), 1549-1557. https://doi.org/10.1104/pp.110.163014

[14]

Dai, J., Mi, W., Wu, C., Song, H., Bao, Y., Zhang, M., Zhang, S., & Fang, W. (2021). The sugar transporter MST1 is involved in colonization of rhizosphere and rhizoplane by Metarhizium robertsii. mSystems, 6(6), e0127721. https://doi.org/10.1128/mSystems.01277-21

[15]

Liao, X., Fang, W., Lin, L., Lu, H. L., & St Leger, R. J. (2013). Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS One, 8(10), e78118. https://doi.org/10.1371/journal.pone.0078118

[16]

Khan, A. L., Hamayun, M., Khan, S. A., Kang, S. M., Shinwari, Z. K., Kamran, M., Ur Rehman, S., Kim, J. G., & Lee, I. J. (2012). Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World Journal of Microbiology & Biotechnology, 28(4), 1483-1494. https://doi.org/10.1007/s11274-011-0950-9

[17]

Behie, S. W., & Bidochka, M. J. (2014). Nutrient transfer in plant-fungal symbioses. Trends in Plant Science, 19(11), 734-740. https://doi.org/10.1016/j.tplants.2014.06.007

[18]

Hu, S., & Bidochka, M. J. (2021). Root colonization by endophytic insect-pathogenic fungi. Journal of Applied Microbiology, 130(2), 570-581. https://doi.org/10.1111/jam.14503

[19]

Stone, L. B. L., & Bidochka, M. J. (2020). The multifunctional lifestyles of Metarhizium: Evolution and applications. Applied Microbiology and Biotechnology, 104(23), 9935-9945. https://doi.org/10.1007/s00253-020-10968-3

[20]

Lahey, S., Angelone, S., DeBartolo, M. O., Coutinho-Rodrigues, C., & Bidochka, M. J. (2020). Localization of the insect pathogenic fungal plant symbionts Metarhizium robertsii and Metarhizium brunneum in bean and corn roots. Fungal Biology, 124(10), 877-883. https://doi.org/10.1016/j.funbio.2020.07.005

[21]

Liu, X., Nong, X., Wang, Q., Li, X., Wang, G., Cao, G., & Zhang, Z. (2016). Persistence and proliferation of a Chinese Metarhizium anisopliae s.s. isolate in the peanut plant root zone. Biocontrol Science and Technology, 26(6), 746-758. https://doi.org/10.1080/09583157.2016.1155106

[22]

Behie, S. W., Jones, S., & Bidochka, M. J. (2015). Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13, 112-119. https://doi.org/10.1016/j.funeco.2014.08.001

[23]

Ramos, Y., Taibo, A. D., Jiménez, J. A., & Portal, O. (2020). Endophytic establishment of Beauveria bassiana and Metarhizium anisopliae in maize plants and its effect against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) larvae. Egyptian Journal of Biological Pest Control, 30(1), 20. https://doi.org/10.1186/s41938-020-00223-2

[24]

Barelli, L., Moreira, C. C., & Bidochka, M. J. (2018). Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology, 164(12), 1531-1540. https://doi.org/10.1099/mic.0.000729

[25]

Ahmad, I., Jiménez-Gasco, M. D., Luthe, D. S., Shakeel, S. N., & Barbercheck, M. E. (2020). Endophytic Metarhizium robertsii promotes maize growth, suppresses insect growth, and alters plant defense gene expression. Biological Control, 144, 104167. https://doi.org/10.1016/j.biocontrol.2019.104167

[26]

Sasan, R. K., & Bidochka, M. J. (2013). Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Canadian Journal of Plant Pathology, 35(3), 288-293. https://doi.org/10.1080/07060661.2013.823114

[27]

Wu, C., Tang, D., Dai, J., Tang, X., Bao, Y., Ning, J., Zhen, Q., Song, H., St Leger, R. J., & Fang, W. (2022). Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii. Proceedings of the National Academy of Sciences of the United States of America, 119(47), e2214513119. https://doi.org/10.1073/pnas.2214513119

[28]

Bamisile, B. S., Afolabi, O. G., Siddiqui, J. A., & Xu, Y. (2023). Endophytic insect pathogenic fungi-host plant-herbivore mutualism: Elucidating the mechanisms involved in the tripartite interactions. World Journal of Microbiology & Biotechnology, 39(12), 326. https://doi.org/10.1007/s11274-023-03780-4

[29]

Vega, F. E. (2018). The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia, 110(1), 4-30. https://doi.org/10.1080/00275514.2017.1418578

[30]

Samal, I., Bhoi, T. K., Majhi, P. K., Murmu, S., Pradhan, A. K., Kumar, D., Saini, V., Paschapur, A. U., Raj, M. N., Ankur , Manik, S., Behera, P. P., Mahanta, D. K., Komal, J., Alam, P., & Balawi, T. A. (2023). Combatting insects mediated biotic stress through plant associated endophytic entomopathogenic fungi in horticultural crops. Frontiers in Plant Science, 13, 1098673. https://doi.org/10.3389/fpls.2022.1098673

[31]

Rocha, L. F. N., Rodrigues, J., Martinez, J. M., Pereira, T. C. D., Neto, J. R. C., Montalva, C., Humber, R. A., & Luz, C. (2022). Occurrence of entomopathogenic hypocrealean fungi in mosquitoes and their larval habitats in Central Brazil, and activity against Aedes aegypti. Journal of Invertebrate Pathology, 194, 107803. https://doi.org/10.1016/j.jip.2022.107803

[32]

Hong, M., Peng, G., Keyhani, N. O., & Xia, Y. (2017). Application of the entomogenous fungus, Metarhizium anisopliae, for leafroller (Cnaphalocrocis medinalis) control and its effect on rice phyllosphere microbial diversity. Applied Microbiology and Biotechnology, 101(17), 6793-6807. https://doi.org/10.1007/s00253-017-8390-6

[33]

Jiang, X., Fang, W., Tong, J., Liu, S., Wu, H., & Shi, J. (2022). Metarhizium robertsii as a promising microbial agent for rice in situ cadmium reduction and plant growth promotion. Chemosphere, 305, 135427. https://doi.org/10.1016/j.chemosphere.2022.135427

[34]

Jiang, X., Dai, J., Zhang, X., Wu, H., Tong, J., Shi, J., & Fang, W. (2022). Enhanced Cd efflux capacity and physiological stress resistance: The beneficial modulations of Metarhizium robertsii on plants under cadmium stress. Journal of Hazardous Materials, 437, 129429. https://doi.org/10.1016/j.jhazmat.2022.129429

[35]

Chowdhury, M. Z. H., Mostofa, M. G., Mim, M. F., Haque, M. A., Karim, M. A., Sultana, R., Rohman, M. M., Bhuiyan, A. U., Rupok, M. R. B., & Islam, S. M. N. (2024). The fungal endophyte Metarhizium anisopliae (MetA1) coordinates salt tolerance mechanisms of rice to enhance growth and yield. Plant Physiology and Biochemistry, 207, 108328. https://doi.org/10.1016/j.plaphy.2023.108328

[36]

Senthil Kumar, C. M., D’Silva, S., Praveena, R., Kaprakkaden, A., Athira Krishnan, L. R., Balaji Rajkumar, M., Srinivasan, V., & Dinesh, R. (2024). Zinc solubilization and organic acid production by the entomopathogenic fungus, Metarhizium pingshaense sheds light on its key ecological role in the environment. The Science of the Total Environment, 923, 171348. https://doi.org/10.1016/j.scitotenv.2024.171348

[37]

Angelone, S., Piña-Torres, I. H., Padilla-Guerrero, I. E., & Bidochka, M. J. (2018). Sleepers" and "creepers": A theoretical study of colony polymorphisms in the fungus Metarhizium related to insect pathogenicity and plant rhizosphere colonization. Insects, 9(3), 104. https://doi.org/10.3390/insects9030104

[38]

Wang, C., & St Leger, R. J. (2007). The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell, 6(5), 808-816. https://doi.org/10.1128/EC.00409-06

[39]

Zhang, J. G., Xu, S. Y., Ying, S. H., & Feng, M. G. (2023). Only one of three hydrophobins (Hyd1-3) contributes to conidial hydrophobicity and insect pathogenicity of Metarhizium robertsii. Journal of Invertebrate Pathology, 201, 108006. https://doi.org/10.1016/j.jip.2023.108006

[40]

Hermosa, R., Viterbo, A., Chet, I., & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(Pt 1), 17-25. https://doi.org/10.1099/mic.0.052274-0

[41]

Dai, J., Tang, X., Wu, C., Liu, S., Mi, W., & Fang, W. (2024). Utilization of plant-derived sugars and lipids are coupled during colonization of rhizoplane and rhizosphere by the fungus Metarhizium robertsii. Fungal Genetics and Biology, 172, 103886. https://doi.org/10.1016/j.fgb.2024.103886

[42]

Liu, S., Wang, X., Tang, X., & Fang, W. (2024). Histone deacetylase HDAC3 regulates ergosterol production for oxidative stress tolerance in the entomopathogenic and endophytic fungus Metarhizium robertsii. mSystems, 9(10), e0095324. https://doi.org/10.1128/msystems.00953-24

[43]

Koch, E., Zink, P., Ullrich, C. I., & Kleespies, R. G. (2018). Light microscopic studies on the development of Beauveria bassiana and other putative endophytes in leaf tissues. Journal Für Kulturpflanzen, 70(3), 95-107. https://doi.org/10.1399/JKI.2018.03.02

[44]

Zhang, X., Meng, Y., Huang, Y., Zhang, D., & Fang, W. (2021). A novel cascade allows Metarhizium robertsii to distinguish cuticle and hemocoel microenvironments during infection of insects. PLoS Biology, 19(8), e3001360. https://doi.org/10.1371/journal.pbio.3001360

[45]

Chethana, K. W. T., Jayawardena, R. S., Chen, Y. J., Konta, S., Tibpromma, S., Abeywickrama, P. D., Gomdola, D., Balasuriya, A., Xu, J., Lumyong, S., & Hyde, K. D. (2021). Diversity and function of appressoria. Pathogens, 10(6), 746. https://doi.org/10.3390/pathogens10060746

[46]

Liu, Y., Yang, Y., & Wang, B. (2022). Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter. Scientific Reports, 12(1), 15706. https://doi.org/10.1038/s41598-022-19899-7

[47]

Ji, L., Yang, X., & Qi, F. (2022). Distinct responses to pathogenic and symbionic microorganisms: The role of plant immunity. International Journal of Molecular Sciences, 23(18), 10427. https://doi.org/10.3390/ijms231810427

[48]

Libault, M., Farmer, A., Brechenmacher, L., Drnevich, J., Langley, R. J., Bilgin, D. D., Radwan, O., Neece, D. J., Clough, S. J., May, G. D., & Stacey, G. (2010). Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiology, 152(2), 541-552. https://doi.org/10.1104/pp.109.148379

[49]

Arthikala, M. K., Sánchez-López, R., Nava, N., Santana, O., Cárdenas, L., & Quinto, C. (2014). RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. New Phytologist, 202(3), 886-900. https://doi.org/10.1111/nph.12714

[50]

Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435(7043), 824-827. https://doi.org/10.1038/nature03608

[51]

Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E. A., Driguez, H., Bécard, G., & Dénarié, J. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469(7328), 58-63. https://doi.org/10.1038/nature09622

[52]

Gupta, R., Keppanan, R., Leibman-Markus, M., Rav-David, D., Elad, Y., Ment, D., & Bar, M. (2022). The entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana promote systemic immunity and confer resistance to a broad range of pests and pathogens in tomato. Phytopathology, 112(4), 784-793. https://doi.org/10.1094/PHYTO-08-21-0343-R

[53]

Morales, J., Kadota, Y., Zipfel, C., Molina, A., & Torres, M. A. (2016). The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. Journal of Experimental Botany, 67(6), 1663-1676. https://doi.org/10.1093/jxb/erv558

[54]

Wu, G. Z., & Xue, H. W. (2010). Arabidopsis β-ketoacyl-[acyl carrier protein] synthase I is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development. The Plant Cell, 22(11), 3726-3744. https://doi.org/10.1105/tpc.110.075564

[55]

Gao, Q., Jin, K., Ying, S. H., Zhang, Y., Xiao, G., Shang, Y., Duan, Z., Hu, X., Xie, X. Q., Zhou, G., Peng, G., Luo, Z., Huang, W., Wang, B., Fang, W., Wang, S., Zhong, Y., Ma, L. J., St Leger, R. J., … Wang, C. (2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 7(1), e1001264. https://doi.org/10.1371/journal.pgen.1001264

[56]

Zhang, Q., Chen, X., Xu, C., Zhao, H., Zhang, X., Zeng, G., Qian, Y., Liu, R., Guo, N., Mi, W., Meng, Y., Leger, R. J. S., & Fang, W. (2019). Horizontal gene transfer allowed the emergence of broad host range entomopathogens. Proceedings of the National Academy of Sciences, 116(16), 7982-7989. https://doi.org/10.1073/pnas.1816430116

[57]

Luginbuehl, L. H., Menard, G. N., Kurup, S., Van Erp, H., Radhakrishnan, G. V., Breakspear, A., Oldroyd, G. E. D., & Eastmond, P. J. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356(6343), 1175-1178. https://doi.org/10.1126/science.aan0081

[58]

Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., Tang, D., & Wang, E. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356(6343), 1172-1175. https://doi.org/10.1126/science.aam9970

[59]

Smith, F. A., Grace, E. J., & Smith, S. E. (2009). More than a carbon economy: Nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist, 182(2), 347-358. https://doi.org/10.1111/j.1469-8137.2008.02753.x

[60]

Behie, S. W., & Bidochka, M. J. (2014). Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: An additional branch of the soil nitrogen cycle. Applied and Environmental Microbiology, 80(5), 1553-1560. https://doi.org/10.1128/AEM.03338-13

[61]

Moonjely, S., Zhang, X., Fang, W., & Bidochka, M. J. (2019). Metarhizium robertsii ammonium permeases (MepC and Mep2) contribute to rhizoplane colonization and modulates the transfer of insect derived nitrogen to plants. PLoS One, 14(10), e0223718. https://doi.org/10.1371/journal.pone.0223718

[62]

Barelli, L., Behie, S. W., & Bidochka, M. J. (2019). Availability of carbon and nitrogen in soil affects Metarhizium robertsii root colonization and transfer of insect-derived nitrogen. FEMS Microbiology Ecology, 95(10), fiz144. https://doi.org/10.1093/femsec/fiz144

[63]

Lung, S. C., & Lim, B. L. (2006). Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco (Nicotiana tabacum) is affected by the availability of soluble phytate. Plant and Soil, 279, 187-199. https://doi.org/10.1007/s11104-005-1009-1

[64]

Chaudhary, P. J., BL, R., Patel, H. K., Mehta, P. V., Patel, N. B., Sonth, B., Dave, A., Bagul, S. Y., M, D., Jain, D., Alsahli, A. A., & Kaushik, P. (2023). Plant growth-promoting potential of entomopathogenic fungus Metarhizium pinghaense AAUBC-M26 under elevated salt stress in tomato. Agronomy, 13(6), 1577. https://doi.org/10.3390/agronomy13061577

[65]

Senthil Kumar, C. M., D’Silva, S., Praveena, R., Kaprakkaden, A., Athira Krishnan, L. R., Balaji Rajkumar, M., Srinivasan, V., & Dinesh, R. (2024). Zinc solubilization and organic acid production by the entomopathogenic fungus, Metarhizium pingshaense sheds light on its key ecological role in the environment. The Science of the Total Environment, 923, 171348. https://doi.org/10.1016/j.scitotenv.2024.171348

[66]

Siqueira, A. C. O., Mascarin, G. M., Gonçalves, C. R. N. C. B., Marcon, J., Quecine, M. C., Figueira, A., & Delalibera, Í. (2020). Multi-trait biochemical features of Metarhizium species and their activities that stimulate the growth of tomato plants. Frontiers in Sustainable Food Systems, 4, 137. https://doi.org/10.3389/fsufs.2020.00137

[67]

Ahmad, I., Jimenez-Gasco, M. D. M., & Barbercheck, M. E. (2024). Water stress and black cutworm feeding modulate plant response in maize colonized by Metarhizium robertsii. Pathogens, 13(7), 544. https://doi.org/10.3390/pathogens13070544

[68]

Luo, F., Tang, G., Hong, S., Gong, T., Xin, X. F., & Wang, C. (2023). Promotion of Arabidopsis immune responses by a rhizosphere fungus via supply of pipecolic acid to plants and selective augment of phytoalexins. Science China Life Sciences, 66(5), 1119-1133. https://doi.org/10.1007/s11427-022-2238-8

[69]

Panwar, N., & Szczepaniec, A. (2024). Endophytic entomopathogenic fungi as biological control agents of insect pests. Pest Management Science, 80(12), 6033-6040. https://doi.org/10.1002/ps.8322

[70]

Moonjely, S., Barelli, L., & Bidochka, M. J. (2016). Insect pathogenic fungi as endophytes. Advances in Genetics, 94, 107-135. https://doi.org/10.1016/bs.adgen.2015.12.004

[71]

Zhen, Q., Wang, X., Cheng, X., & Fang, W. (2024). Remediation of toxic metal and metalloid pollution with plant symbiotic fungi. Advances in Applied Microbiology, 129, 171-187. https://doi.org/10.1016/bs.aambs.2024.04.001

RIGHTS & PERMISSIONS

2025 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/