Molecular evolution and interaction of ROS with ion transport for plant abiotic stresses

Hanxia Yu , Haoyan Xiao , Salah Fatouh Abou-Elwafa , Yabei Qiao , Lily Chen , Mohammed Ali Alshehri , Yusen Wu , Wei Jiang , Wenbing Tan

New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e22

PDF
New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e22 DOI: 10.1002/npp2.22
COMPREHENSIVE REVIEW

Molecular evolution and interaction of ROS with ion transport for plant abiotic stresses

Author information +
History +
PDF

Abstract

Reactive oxygen species (ROS) serve as crucial signaling molecules in plants, enabling rapid responses to environmental stresses such as abiotic factors. ROS production primarily stems from the activation of enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and peroxidases, as well as disruptions in the respiratory and photosynthetic electron transport chains. This oxidative stress triggers signaling pathways that involve in calcium ion (Ca2+) influx across cell membranes, altering ionic conductance. ROS encompass hydroxyl radicals (OH·) and hydrogen peroxide (H2O2), which activate hyperpolarization-activated Ca2+ channels and influence ion transport dynamics. Our review focuses on the mechanisms driving ROS generation and ion transport during plant responses to abiotic stress. We explore the regulation, characteristics, and potential structures of ROS-activated ion channels in plants. Specifically, we examine the molecular responses and evolutionary adaptations of Shaker-type K+ channels (AKT/KAT/GORK/SKOR) under stress conditions. Comparative genetic analyses highlight the conservation of these channels and other ROS-regulated proteins (e.g., MDHAR, POX, and RBOH), suggesting their essential roles in plant to adapt to diverse stresses. This study underscores the significance of ROS-regulated proteins in plant stress responses, advocating for further research to elucidate their fundamental roles.

Keywords

abiotic stress / comparative genomics / crosstalk / ion transport systems / plasma membrane / reactive oxygen species / stomata

Cite this article

Download citation ▾
Hanxia Yu, Haoyan Xiao, Salah Fatouh Abou-Elwafa, Yabei Qiao, Lily Chen, Mohammed Ali Alshehri, Yusen Wu, Wei Jiang, Wenbing Tan. Molecular evolution and interaction of ROS with ion transport for plant abiotic stresses. New Plant Protection, 2024, 1(2): e22 DOI:10.1002/npp2.22

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mittler,R., Zandalinas, S. I., Fichman,Y., & Van Breusegem,F. (2022). Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23(10), 663–679.

[2]

Jiang,W., He,J., Babla,M., Wu, T., Tong,T., Riaz,A., Chen,Z.-H., Qin,Y., Chen, G., & Deng,F. (2024). Molecular evolution and interaction of 14-3-3 proteins with h+-atpases in plant abiotic stresses. Journal of Experimental Botany, 75(3), 689–707.

[3]

Wang,Z., & Song, Y. (2022). Toward understanding the genetic bases underlying plant-mediated “cry for help” to the microbiota. iMeta, 1(1), e8.

[4]

Yamada,N., Onjo,M., Sonoike,K., Shimazaki, K. i., & Iwai,S. (2024). Chloroplast K+/H+exchange antiporter 3 modulates abscisic acid-induced reactive oxygen species generation in guard cells. Physiologia Plantarum, 176(1), e14136.

[5]

Yang,R., Yang,Z., Xing,M., Jing, Y., Zhang,Y., Zhang,K., Sun,J., Zhao,H., & Qiao, W. (2023). Tabzr1 enhances wheat salt tolerance via promoting aba biosynthesis and ros scavenging. Journal of Genetics and Genomics, 50(11), 861–871.

[6]

Ma,L., Li,X., Zhang,J., Yi, D., Li,F., Wen,H., & Wang, X. (2023). Mswrky33 increases alfalfa (Medicago sativa l.) salt stress tolerance through altering the ros scavenger via activating mserf5 transcription. Plant, Cell and Environment, 46(12), 3887–3901.

[7]

Pan,R., Xu,Y. H., Xu,L., Zhou, M. X., Jiang,W., Wang,Q., & Zhang, W. Y. (2020). Methylation changes in response to hypoxic stress in wheat regulated by methyltransferases. Russian Journal of Plant Physiology, 67(2), 323–333.

[8]

Rahman,M. M., Ghosh,P. K., Akter,M., Al Noor, M. M., Rahman,M. A., Keya,S. S., Bulle,M., & Biswas,A. (2024). Green vanguards: Harnessing the power of plant antioxidants, signal catalysts, and genetic engineering to combat reactive oxygen species under multiple abiotic stresses. Plant Stress, 13, 100547.

[9]

Pottosin,I., Velarde-Buendia, A. M., Bose,J., Zepeda-Jazo,I., Shabala, S., & Dobrovinskaya,O. (2014). Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: Implications for plant adaptive responses. Journal of Experimental Botany, 65(5), 1271–1283.

[10]

Medeiros,D. B., Barros, J. A. S., Fernie,A. R., & Araujo,W. L. (2020). Eating away at ros to regulate stomatal opening. Trends in Plant Science, 25(3), 220–223.

[11]

Dou,D., Sun,J., Abou-Elwafa,S. F., Guo,X., Guo,Y., Wang,D., Alotaibi, N. M. (2024). Zmili1 confers salt stress tolerance by regulating genes of phytohormone response in maize. Environmental and Experimental Botany, 224, 105673.

[12]

Dietz,K. J., & Vogelsang, L. (2024). A general concept of quantitative abiotic stress sensing. Trends in Plant Science, 29(3), 319–328.

[13]

Ravi,B., Foyer,C. H., & Pandey,G. K. (2023). The integration of reactive oxygen species (ROS) and calcium signalling in abiotic stress responses. Plant, Cell and Environment, 46(7), 1985–2006.

[14]

Kurusu,T., Kuchitsu, K., & Tada,Y. (2015). Plant signaling networks involving ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Frontiers in Plant Science, 6, 427.

[15]

Wu,B., Qi,F., & Liang,Y. (2023). Fuels for ROS signaling in plant immunity. Trends in Plant Science, 28(10), 1124–1131.

[16]

Qi,J., Song,C. P., Wang,B., Zhou, J., Kangasjarvi,J., Zhu,J. K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9), 805–826.

[17]

Lee,K. P., & Kim, C. (2024). Photosynthetic ROS and retrograde signaling pathways. New Phytologist, 244(4), 1183–1198.

[18]

Khan,M., Ali,S., Al Azzawi,T. N. I., Saqib,S., Ullah,F., Ayaz,A., & Zaman, W. (2023). The key roles of ROS and RNS as a signaling molecule in plant-microbe interactions. Antioxidants, 12(2), 268.

[19]

Breygina,M., & Klimenko, E. (2020). ROS and ions in cell signaling during sexual plant reproduction. International Journal of Molecular Sciences, 21(24), 9476.

[20]

Liu,C., & Liao, W. (2022). Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species. Plant Physiology and Biochemistry, 173, 110–121.

[21]

Shabala,S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151(3), 257–279.

[22]

Wang,Y., Chen,Y. F., & Wu,W. H. (2021). Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology, 63(1), 34–52.

[23]

Shabala,S. (2017). Signalling by potassium: Another second messenger to add to the list? Journal of Experimental Botany, 68(15), 4003–4007.

[24]

Amjad,M., Akhtar, J., Anwar-Ui-Haq,M., Imran,S., & Jacobsen, S. E. (2014). Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turkish Journal of Biology, 38, 208–218.

[25]

Feng,X., Liu,W., Cao,F., Wang, Y., Zhang,G., Chen,Z. H., & Wu, F. (2020). Overexpression of hvakt1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and no signaling. Journal of Experimental Botany, 71(20), 6587–6600.

[26]

Ma,L., Zhang,H., Sun,L., Jiao, Y., Zhang,G., Miao,C., & Hao, F. (2012). Nadph oxidase atrbohd and atrbohf function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany, 63(1), 305–317.

[27]

Tong,T., Li,Q., Jiang,W., Chen, G., Xue,D., Deng,F., & Chen, Z. H. (2021). Molecular evolution of calcium signaling and transport in plant adaptation to abiotic stress. International Journal of Molecular Sciences, 22(22), 12308.

[28]

Gilroy,S., Suzuki, N., Miller,G., Choi,W. G., Toyota, M., Devireddy,A. R., & Mittler,R. (2014). A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science, 19(10), 623–630.

[29]

Choi,W. G., Miller, G., Wallace,I., Harper,J., Mittler, R., & Gilroy,S. (2017). Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. The Plant Journal, 90(4), 698–707.

[30]

Qiao,B., Zhang,Q., Liu,D., Wang, H., Yin,J., Wang,R., Zhu,Z., Cui,M., & Shang, Z. (2015). A calcium-binding protein, rice annexin osann1, enhances heat stress tolerance by modulating the production of H2O2. Journal of Experimental Botany, 66(19), 5853–5866.

[31]

Ren,Z., Fu,J., Abou-Elwafa,S. F., Ku,L., Xie,X., Liu,Z., Wei, L., Wen,P., Al Aboud,N. M., Su,H., Wang,T. (2024). Analysis of the molecular mechanisms regulating how ZmEREB24 improves drought tolerance in maize (Zea Mays) seedlings. Plant Physiology and Biochemistry, 207, 108292.

[32]

Wang,Z., Zhao,X., Ren,Z., Abou-Elwafa, S. F., Pu,X., Zhu,Y., Ku,L., Su,H., Cheng, H., Liu,Z., Chen,Y., Wang,E., Shao,R. (2022). Zmerf21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant, Cell and Environment, 45(2), 312–328.

[33]

Laohavisit,A., Richards, S. L., Shabala,L., Chen,C., Colaco, R. D., Swarbreck,S. M., Davies,J. M., Dark,A., & Shang,Z. (2013). Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiology, 163(1), 253–262.

[34]

Han,H., Pan,R., Buitrago,S., Abou-Elwafa, S. F., Peng,Y., Liu,Y., & Yang, X. S. (2021). The physiological basis of genotypic variations in low-oxygen stress tolerance in the vegetable sweet potato. Russian Journal of Plant Physiology, 68(6), 1236–1246.

[35]

Liu,Q., Ding,Y., Shi,Y., Ma, L., Wang,Y., Song,C., Yang,S., Davies,J. M., Knight,H., Knight, M. R., Gong,Z., & Guo,Y. (2021). The calcium transporter annexin1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO Journal, 40(2), e104559.

[36]

Pan,R., Buitrago, S., Peng,Y., Fatouh Abou-Elwafa,S., Wan, K., Liu,Y., Zhang,W., Yang,X. (2022). Genome-wide identification of cold-tolerance genes and functional analysis of IbbHLH116 gene in sweet potato. Gene, 837, 146690.

[37]

Demidchik,V. (2018). Ros-activated ion channels in plants: Biophysical characteristics, physiological functions and molecular nature. International Journal of Molecular Sciences, 19(4), 1263.

[38]

Singh,V. P., Jaiswal, S., Wang,Y., Feng,S., Tripathi, D. K., Singh,S., Chen,Z.-H., Xue,D., & Xu,S. (2024). Evolution of reactive oxygen species cellular targets for plant development. Trends in Plant Science, 29(8), 865–877.

[39]

Wang,P., Liu,W. C., Han,C., Wang, S., Bai,M. Y., & Song,C. P. (2024). Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology, 66(3), 330–367.

[40]

Zhao,C., Wang,Y., Chan,K. X., Marchant, D. B., Franks,P. J., Randall,D., Chen,Z. H., Chen,G., Ramesh, S., Phua,S. Y., Zhang,B., Hills,A., Dai,F., Xue, D., Gilliham,M., Tyerman,S., Nevo,E., Wu,F., Zhang, G, … Pogson,B. J. (2019). Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proceedings of the National Academy of Sciences of the United States of America, 116(11), 5015–5020.

[41]

Riaz,A., Deng,F., Chen,G., Jiang, W., Zheng,Q., Riaz,B., Chen,Z. H., & Zeng,F. (2022). Molecular regulation and evolution of redox homeostasis in photosynthetic machinery. Antioxidants, 11(11), 2085.

[42]

Pan,R., Buitrago, S., Feng,Z., Abou-Elwafa,S. F., Xu, L., Li,C., & Zhang,W. (2022). Hvbzip21, a novel transcription factor from wild barley confers drought tolerance by modulating ros scavenging. Frontiers in Plant Science, 13, 878459.

[43]

Jin,H., Wang,D., & Wang,X. (2023). A novel module regulating ROS in NLR-mediated immunity. Trends in Plant Science, 28(5), 512–514.

[44]

Sandalio,L. M., Espinosa, J., Shabala,S., León,J., Romero-Puertas, M. C., & Aroca,A. (2023). Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. Journal of Experimental Botany, 74(19), 5970–5988.

[45]

Devireddy,A. R., Zandalinas, S. I., Fichman,Y., & Mittler,R. (2021). Integration of reactive oxygen species and hormone signaling during abiotic stress. The Plant Journal, 105(2), 459–476.

[46]

Baxter,A., Mittler, R., & Suzuki,N. (2014). Ros as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240.

[47]

Hu,B., Deng,F., Chen,G., Chen, X., Gao,W., Long,L., & Chen, Z. H. (2020). Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Frontiers in Plant Science, 11, 909.

[48]

Casey,A., & Dolan, L. (2023). Genes encoding cytochrome p450 monooxygenases and glutathione S-transferases associated with herbicide resistance evolved before the origin of land plants. PLoS One, 18(2), e0273594.

[49]

Liu,Y. J., Han,X. M., Ren,L. L., Yang, H. L., & Zeng,Q. Y. (2013). Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiology, 161(2), 773–786.

[50]

Vaish,S., Gupta,D., Mehrotra,R., Mehrotra, S., & Basantani,M. K. (2020). Glutathione s-transferase: A versatile protein family. 3 Biotech, 10(7), 321.

[51]

Cecchini,N. M., Monteoliva, M. I., & Alvarez,M. E. (2011). Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiology, 155(4), 1947–1959.

[52]

Rajput,V. D., Harish, Singh,R. K., Verma,K. K., Sharma, L., Quiroz-Figueroa,F. R., Mandzhieva,S., Gour,V. S., Minkina, T., & Sushkova,S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10(4), 267.

[53]

Maruta,T., Tanaka, Y., Yamamoto,K., Ishida,T., Hamada, A., & Ishikawa,T. (2024). Evolutionary insights into strategy shifts for the safe and effective accumulation of ascorbate in plants. Journal of Experimental Botany, 75(9), 2664–2681.

[54]

Gest,N., Gautier, H., & Stevens,R. (2013). Ascorbate as seen through plant evolution: The rise of a successful molecule? Journal of Experimental Botany, 64(1), 33–53.

[55]

Hawamda,A. I. M., Zahoor, A., Abbas,A., Ali,M. A., & Bohlmann, H. (2020). The Arabidopsis RboHB encoded by At1g09090 is important for resistance against nematodes. International Journal of Molecular Sciences, 21(15), 5556.

[56]

Li,D., Wu,D., Li,S., Dai, Y., & Cao,Y. (2019). Evolutionary and functional analysis of the plant-specific NADPH oxidase gene family in Brassica rapa L. Royal Society Open Science, 6(2), 181727.

[57]

Kaur,G., Sharma, A., Guruprasad,K., & Pati,P. K. (2014). Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnology Advances, 32(3), 551–563.

[58]

Kaur,G., Guruprasad, K., Temple,B. R. S., Shirvanyants,D. G., Dokholyan, N. V., & Pati,P. K. (2018). Structural complexity and functional diversity of plant NADPH oxidases. Amino Acids, 50(1), 79–94.

[59]

Torres,M. A., & Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8(4), 397–403.

[60]

Fichman,Y., Rowland, L., Oliver,M. J., & Mittler,R. (2023). ROS are evolutionary conserved cell-to-cell stress signals. Proceedings of the National Academy of Sciences of the United States of America, 120(31), e2305496120.

[61]

Chen,Z. H., Chen,G., Dai,F., Wang, Y., Hills,A., Ruan,Y. L., Blatt,M. R., Franks,P. J., & Nevo,E. (2017). Molecular evolution of grass stomata. Trends in Plant Science, 22(2), 124–139.

[62]

Song,Y., Miao,Y., & Song,C. P. (2014). Behind the scenes: The roles of reactive oxygen species in guard cells. New Phytologist, 201(4), 1121–1140.

[63]

Sierla,M., Waszczak, C., Vahisalu,T., & Kangasjarvi,J. (2016). Reactive oxygen species in the regulation of stomatal movements. Plant Physiology, 171(3), 1569–1580.

[64]

Singh,R., Parihar, P., Singh,S., Mishra,R. K., Singh,V. P., & Prasad,S. M. (2017). Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives. Redox Biology, 11, 213–218.

[65]

Jiang,W., Tong,T., Chen,X., Deng, F., Zeng,F., Pan,R., & Chen, Z.-H. (2022). Molecular response and evolution of plant anion transport systems to abiotic stress. Plant Molecular Biology, 110(4-5), 397–412.

[66]

Bharath,P., Gahir,S., & Raghavendra,A. S. (2021). Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Frontiers in Plant Science, 12, 615114.

[67]

Kostaki,K. I., Coupel-Ledru, A., Bonnell,V. C., Gustavsson,M., Sun,P., McLaughlin,F. J., Franklin,K. A., McLachlan, D. H., Hetherington,A. M., & Dodd,A. N. (2020). Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiology, 182(3), 1404–1419.

[68]

Yuan,D., Wu,X., Jiang,X., Gong, B., & Gao,H. (2024). Types of membrane transporters and the mechanisms of interaction between them and reactive oxygen species in plants. Antioxidants, 13(2), 221.

[69]

Pantoja,O. (2021). Recent advances in the physiology of ion channels in plants. Annual Review of Plant Biology, 72(1), 463–495.

[70]

Niekerk,L. A., Gokul,A., Basson,G., Badiwe, M., Nkomo,M., Klein,A., & Keyster, M. (2024). Heavy metal stress and mitogen activated kinase transcription factors in plants: Exploring heavy metal-ROS influences on plant signalling pathways. Plant, Cell and Environment, 47(8), 2793–2810.

[71]

Pelaez-Vico,M. A., Fichman, Y., Zandalinas,S. I., Foyer,C. H., & Mittler, R. (2024). ROS are universal cell-to-cell stress signals. Current Opinion in Plant Biology, 79, 102540.

[72]

Liu,H., Song,S., Zhang,H., Li, Y., Niu,L., Zhang,J., & Wang, W. (2022). Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. International Journal of Molecular Sciences, 23(23), 14824.

[73]

Huang,Y., Cao,H., Yang,L., Chen, C., Shabala,L., Xiong,M., Shabala, S., Liu,J., Zheng,Z., Zhou,L., Peng,Z., & Bie, Z. (2019). Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in cucurbitaceae. Journal of Experimental Botany, 70(20), 5879–5893.

[74]

Sierla,M., Horak,H., Overmyer,K., Waszczak, C., Yarmolinsky,D., Maierhofer,T., Kangasjarvi, J., Salojärvi,J., Denessiouk,K., Laanemets, K., Tõldsepp,K., Vahisalu,T., Gauthier, A., Puukko,T., Paulin,L., Auvinen, P., Geiger,D., Hedrich,R., & Kollist, H. (2018). The receptor-like pseudokinase GHR1 is required for stomatal closure. The Plant Cell, 30(11), 2813–2837.

[75]

Yang,M., Duan,X., Wang,Z., Yin, H., Zang,J., Zhu,K., & Zhang, P. (2021). Overexpression of a voltage-dependent anion-selective channel (VDAC) protein-encoding gene, MsVDAC, from Medicago sativa confers cold and drought tolerance to transgenic tobacco. Genes, 12(11), 1706.

[76]

Qin,H., Yang,W., Liu,Z., Ouyang, Y., Wang,X., Duan,H., Zhang,X., Wang,S., Zhang, J., Chang,Y., Jiang,K., & Yu, K. (2024). Mitochondrial voltage-dependent anion channel 3 regulates stomatal closure by abscisic acid signaling. Plant Physiology, 194(2), 1041–1058.

[77]

Zhang,M., Liu,S., Takano,T., & Zhang, X. (2019). The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under nacl stress in Arabidopsis. Planta, 249(2), 417–429.

[78]

Kanwar,P., Sanyal, S. K., Mahiwal,S., Ravi,B., Kaur,K., Fernandes,J. L., Pandey,G. K., Tokas,I., Srivastava,A. K., & Suprasanna,P. (2022). CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. The Plant Journal, 109(1), 241–260.

[79]

Zhang,Z., Wang,Q., Yan,H., Cang, X., Li,W., He,J., Chang,M., Lou,L., & Wang, R. (2024). Lighting-up wars: Stories of Ca2+ signaling in plant immunity. New Crops, 1, 100027.

[80]

Zhang,L., Li,D., Yao,Y., & Zhang, S. (2020). H2O2, Ca2+, and K+ in subsidiary cells of maize leaves are involved in regulatory signaling of stomatal movement. Plant Physiology and Biochemistry, 152, 243–251.

[81]

Wang,Y., Chen,Z. H., Zhang,B., Hills, A., & Blatt,M. R. (2013). PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl- channels through reactive oxygen species-mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells. Plant Physiology, 163(2), 566–577.

[82]

Wang,H., Shabala, L., Zhou,M., & Shabala,S. (2018). Hydrogen peroxide-induced root Ca2+ and K+ fluxes correlate with salt tolerance in cereals: Towards the cell-based phenotyping. International Journal of Molecular Sciences, 19(3), 702.

[83]

Garcia-Marti,M., Pinero, M. C., Garcia-Sanchez,F., Mestre,T. C., Lopez-Delacalle, M., Martinez,V., & Rivero,R. M. (2019). Amelioration of the oxidative stress generated by simple or combined abiotic stress through the K+ and Ca2+ supplementation in tomato plants. Antioxidants, 8(4), 81.

[84]

Liu,Y., Yu,Y., Sun,J., Cao, Q., Tang,Z., Liu,M., Sun,J., & Ma,D. (2019). Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid Ipomoea trifida. Journal of Experimental Botany, 70(4), 1389–1405.

[85]

Rahman,M. A., Yong-Goo, K., Iftekhar,A., Liu,G. S., Hyoshin, L., Joo,L. J., & Byung-Hyun,L. (2016). Proteome analysis of alfalfa roots in response to water deficit stress. Journal of Integrative Agriculture, 15(6), 1275–1285.

[86]

Yu,Y., Li,X., Sun,J., Zhang, X., Xu,T., Zhang,J., & Chen, S. (2016). Heat shock responses in Populus euphratica cell cultures: Important role of crosstalk among hydrogen peroxide, calcium and potassium. Plant Cell, Tissue and Organ Culture, 125(2), 215–230.

[87]

Jamra,G., Agarwal, A., Singh,N., Sanyal,S. K., Kumar,A., & Pandey,G. K. (2021). Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana. Plant Cell Reports, 40(11), 2205–2223.

[88]

Raina,M., Kumar,A., Yadav,N., Kumari, S., Yusuf,M. A., Mustafiz,A., & Kumar, D. (2021). StCaM2, a calcium binding protein, alleviates negative effects of salinity and drought stress in tobacco. Plant Molecular Biology, 106(1-2), 85–108.

[89]

Hu,C.-H., Zeng,Q.-D., Tai,L., Li, B.-B., Zhang,P.-P., Nie,X.-M., Kang,Z.-S., Liu,W. T., Li, W. Q., Han,D. J., & Chen,K. M. (2020). Interaction between TaNOX7 and TaCDPK13 contributes to plant fertility and drought tolerance by regulating ROS production. Journal of Agricultural and Food Chemistry, 68(28), 7333–7347.

[90]

Dong,H., Wu,C., Luo,C., Wei, M., Qu,S., & Wang,S. (2020). Overexpression of MdCPK1a gene, a calcium dependent protein kinase in apple, increase tobacco cold tolerance via scavenging ROS accumulation. PLoS One, 15(11), e0242139.

[91]

Ma,Y., Cao,J., Chen,Q., He, J., Liu,Z., Wang,J., & Yang, Y. (2019). The kinase CIPK11 functions as a negative regulator in drought stress response in Arabidopsis. International Journal of Molecular Sciences, 20(10), 2422.

[92]

Lu,L., Chen,X., Wang,P., Lu, Y., Zhang,J., Yang,X., Chen,J., & Shi,J. (2021). CIPK11: A calcineurin B-like protein-interacting protein kinase from Nitraria tangutorum, confers tolerance to salt and drought in Arabidopsis. BMC Plant Biology, 21(1), 123.

[93]

He,L., Yang,X., Wang,L., Zhu, L., Zhou,T., Deng,J., & Zhang, X. (2013). Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 435(2), 209–215.

[94]

Su,Y., Guo,A., Huang,Y., Wang, Y., & Hua,J. (2020). GhCIPK6a increases salt tolerance in transgenic upland cotton by involving in ROS scavenging and MAPK signaling pathways. BMC Plant Biology, 20(1), 421.

[95]

Ma,X., Li,Y., Gai,W. X., Li, C., & Gong,Z. H. (2021). The CaCIPK3 gene positively regulates drought tolerance in pepper. Horticulture Research, 8(1), 216.

[96]

Kang,H. K., & Nam, K. H. (2016). Reverse function of ROS-induced CBL10 during salt and drought stress responses. Plant Science, 243, 49–55.

[97]

Shabala,L., Zhang,J., Pottosin,I., Bose, J., Zhu,M., Fuglsang,A. T., Shabala, S., Massart,A., Hill,C. B., Roessner, U., Bacic,A., Wu,H., Azzarello, E., Pandolfi,C., Zhou,M., Poschenrieder, C., & Mancuso,S. (2016). Cell-type-specific H+-atpase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress. Plant Physiology, 172(4), 2445–2458.

[98]

Feng,C., He,C., Wang,Y., Xu, H., Xu,K., Zhao,Y., Li,H., Zhang,Y., Idrice Carther, K. F., Luo,J., Sun,D., Gao,H., Wang,F., Li, X., Liu,W., Dong,Y., Wang,N., & Zhou,Y. (2021). Genome-wide identification of soybean shaker K+ channel gene family and functional characterization of GmAKT1 in transgenic Arabidopsis thaliana under salt and drought stress. Journal of Plant Physiology, 266, 153529.

[99]

Luo,Q., Wei,Q., Wang,R., Zhang, Y., Zhang,F., He,Y., He,G., Feng,J., & Yang, G. (2017). BdCIPK31, a calcineurin B-like protein-interacting protein kinase, regulates plant response to drought and salt stress. Frontiers in Plant Science, 8, 1184.

[100]

Harb,A., Simpson, C., Guo,W., Govindan,G., Kakani, V. G., & Sunkar,R. (2020). The effect of drought on transcriptome and hormonal profiles in barley genotypes with contrasting drought tolerance. Frontiers in Plant Science, 11, 618491.

[101]

Borrego-Benjumea,A., Carter, A., Tucker,J. R., Yao,Z., Xu,W., & Badea,A. (2020). Genome-wide analysis of gene expression provides new insights into waterlogging responses in barley (Hordeum vulgare L.). Plants-Basel, 9(2), 240.

[102]

Pacak,A., Barciszewska-Pacak, M., Swida-Barteczka,A., Kruszka,K., Sega,P., Milanowska,K., Szweykowska-Kulinska,Z., & Jarmolowski,A. (2016). Heat stress affects pi-related genes expression and inorganic phosphate deposition/accumulation in barley. Frontiers in Plant Science, 7, 926.

[103]

Haas,M., Himmelbach, A., & Mascher,M. (2020). The contribution of cis- and trans-acting variants to gene regulation in wild and domesticated barley under cold stress and control conditions. Journal of Experimental Botany, 71(9), 2573–2584.

[104]

Fu,L., Shen,Q., Kuang,L., Wu, D., & Zhang,G. (2019). Transcriptomic and alternative splicing analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Environmental and Experimental Botany, 166, 103810.

[105]

Chen,Y., Dubois, M., Vermeersch,M., Inze,D., & Vanhaeren, H. (2021). Distinct cellular strategies determine sensitivity to mild drought of Arabidopsis natural accessions. Plant Physiology, 186(186), 1171–1185.

[106]

Sharma,R., Singh,G., Bhattacharya,S., & Singh,A. (2018). Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress. PLoS One, 13(9), e0203266.

[107]

Blair,E. J., Bonnot, T., Hummel,M., Hay,E., Marzolino, J. M., Quijada,I. A., & Nagel,D. H. (2019). Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Scientific Reports, 9(1), 4814.

[108]

Yang,T., Yuan,G., Zhang,Q., Xuan, L., Li,J., Zhou,L., Wang,C., & Wang,X. (2021). Transcriptome and metabolome analyses reveal the pivotal role of hydrogen sulfide in promoting submergence tolerance in Arabidopsis. Environmental and Experimental Botany, 183, 104365.

[109]

Yang,L., Jin,Y., Huang,W., Sun, Q., Liu,F., & Huang,X. (2018). Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. BMC Genomics, 19(1), 717.

[110]

Khraiwesh,B., Qudeimat, E., Thimma,M., Chaiboonchoe,A., Jijakli, K., Alzahmi,A., & Salehi-Ashtiani,K. (2015). Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response. Scientific Reports, 5(1), 17434.

[111]

Elzanati,O., Mouzeyar, S., & Roche,J. (2020). Dynamics of the transcriptome response to heat in the moss, Physcomitrella patens. International Journal of Molecular Sciences, 21(4), 1512.

[112]

Jiang,W., Pan,R., Buitrago,S., Wu, C., Abou-Elwafa,S. F., Xu,Y., & Zhang, W. (2021). Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 27(6), 1245–1260.

[113]

Pertea,M., Kim,D., Pertea,G. M., Leek,J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11(9), 1650–1667.

[114]

Yu,Y., Zhang,H., Long,Y., Shu, Y., & Zhai,J. (2022). Plant public RNA-seq database: A comprehensive online database for expression analysis of ∼45 000 plant public RNA-seq libraries. Plant Biotechnology Journal, 20(5), 806–808.

[115]

Feng,X., Liu,W., Qiu,C. W., Zeng, F., Wang,Y., Zhang,G., & Wu, F. (2020). HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnology Journal, 18(8), 1683–1696.

[116]

Abhijith Shankar,P. S., Parida, P., Bhardwaj,R., Yadav,A., Swapnil, P., Seth,C. S., & Meena,M. (2024). Deciphering molecular regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) signalling networks in Oryza genus amid environmental stress. Plant Cell Reports, 43(7), 185.

[117]

Hasanuzzaman,M., Bhuyan, M., Parvin,K., Bhuiyan,T. F., Anee,T. I., Nahar,K., Fujita, M., Zulfiqar,F., & Alam,M. M. (2020). Regulation of ros metabolism in plants under environmental stress: A review of recent experimental evidence. International Journal of Molecular Sciences, 21(22), 8695.

[118]

Borbély,P., Gasperl, A., Pálmai,T., Ahres,M., Asghar, M. A., Galiba,G., & Kocsy,G. (2022). Light intensity- and spectrum-dependent redox regulation of plant metabolism. Antioxidants, 11(7), 1311.

[119]

Noctor,G., Reichheld, J. P., & Foyer,C. H. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell and Developmental Biology, 80, 3–12.

[120]

Mignolet-Spruyt,L., Xu, E., Idanheimo,N., Hoeberichts,F. A., Muhlenbock, P., Brosche,M., & Kangasjarvi,J. (2016). Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. Journal of Experimental Botany, 67(13), 3831–3844.

[121]

Dumanovic,J., Nepovimova, E., Natic,M., Kuca,K., & Jacevic, V. (2020). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in Plant Science, 11, 552969.

[122]

Das,P., Nutan,K. K., Singla-Pareek,S. L., & Pareek,A. (2015). Oxidative environment and redox homeostasis in plants: Dissecting out significant contribution of major cellular organelles. Frontiers in Environmental Science, 2, 70.

[123]

Huang,S., Van Aken, O., Schwarzlander,M., Belt,K., & Millar, A. H. (2016). The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiology, 171(3), 1551–1559.

[124]

Keunen,E., Remans, T., Bohler,S., Vangronsveld,J., & Cuypers, A. (2011). Metal-induced oxidative stress and plant mitochondria. International Journal of Molecular Sciences, 12(10), 6894–6918.

[125]

Schwarzlander,M., & Finkemeier, I. (2013). Mitochondrial energy and redox signaling in plants. Antioxidants and Redox Signaling, 18(16), 2122–2144.

[126]

Lazaro,J. J., Jimenez, A., Camejo,D., Iglesias-Baena,I., Marti Mdel, C., Lazaro-Payo,A., & Sevilla,F. (2013). Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation. Frontiers in Plant Science, 4, 460.

[127]

Nouet,C., Motte,P., & Hanikenne,M. (2011). Chloroplastic and mitochondrial metal homeostasis. Trends in Plant Science, 16(7), 395–404.

[128]

Vishwakarma,A., Bashyam, L., Senthilkumaran,B., Scheibe,R., & Padmasree, K. (2014). Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana. Plant Physiology and Biochemistry, 81, 44–53.

[129]

Nunes-Nesi,A., Araujo, W. L., & Fernie,A. R. (2011). Targeting mitochondrial metabolism and machinery as a means to enhance photosynthesis. Plant Physiology, 155(1), 101–107.

[130]

Zhao,Y., Luo,L., Xu,J., Xin, P., Guo,H., Wu,J., Li,J., Wang,G., Chu, J., Zuo,J., Yu,H., & Huang, X. (2018). Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Research, 28(4), 448–461.

[131]

Ratajczak,E., Malecka, A., Ciereszko,I., & Staszak,A. M. (2019). Mitochondria are important determinants of the aging of seeds. International Journal of Molecular Sciences, 20(7), 1568.

[132]

Gill,S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

[133]

Del Rio,L. A. (2015). ROS and RNS in plant physiology: An overview. Journal of Experimental Botany, 66(10), 2827–2837.

[134]

Kapoor,D., Sharma, R., Handa,N., Kaur,H., Rattan, A., Yadav,P., Bhardwaj,R., & Kaur, R. (2015). Redox homeostasis in plants under abiotic stress: Role of electron carriers, energy metabolism mediators and proteinaceous thiols. Frontiers in Environmental Science, 3, 13.

[135]

Awasthi,R., Bhandari, K., & Nayyar,H. (2015). Temperature stress and redox homeostasis in agricultural crops. Frontiers in Environmental Science, 3, 11.

[136]

Meng,L., Zhang,Q., Yang,J., Xie, G., & Liu,J. H. (2020). PtrCDPK10 of Poncirus trifoliata functions in dehydration and drought tolerance by reducing ROS accumulation via phosphorylating PtrAPX. Plant Science, 291, 110320.

[137]

Hu,Z., Li,J., Ding,S., Cheng, F., Li,X., Jiang,Y., Shi,K., & Foyer,C. H. (2021). The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermotolerance in tomato. Plant Physiology, 186(2), 1302–1317.

[138]

Meenakshi Kumar,A., Kumar, V., Dubey,A. K., Narayan,S., Sawant, S. V., Sanyal,I., Pande,V., & Shirke, P. A. (2021). CaMTA transcription factor enhances salinity and drought tolerance in chickpea (Cicer arietinum L.). Plant Cell, Tissue and Organ Culture, 148(2), 319–330.

[139]

Farooq,M. A., Niazi,A. K., Akhtar,J., Saifullah Farooq,M., Souri,Z., Rengel,Z., & Karimi, N. (2019). Acquiring control: The evolution of ROS-induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 141, 353–369.

[140]

Gleason,C., Huang,S., Thatcher,L. F., Foley,R. C., Anderson, C. R., Carroll,A. J., & Singh,K. B. (2011). Mitochondrial complex ii has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proceedings of the National Academy of Sciences of the United States of America, 108(26), 10768–10773.

[141]

Morgan,M. J., Lehmann, M., Schwarzlander,M., Baxter,C. J., Sienkiewicz-Porzucek, A., Williams,T. C., Finkemeier,I., Fernie, A. R., Fricker,M. D., Ratcliffe,R. G., & Sweetlove, L. J. (2008). Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiology, 147(1), 101–114.

[142]

Jardim-Messeder,D., Caverzan, A., Rauber,R., de Souza Ferreira,E., Margis-Pinheiro, M., & Galina,A. (2015). Succinate dehydrogenase (mitochondrial complex ii) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytologist, 208(3), 776–789.

[143]

Corpas,F. J., Gonzalez-Gordo, S., & Palma,J. M. (2020). Plant peroxisomes: A factory of reactive species. Frontiers in Plant Science, 11, 853.

[144]

Corpas,F. J., Rio,L. A. D., & Palma,J. M. (2019). Impact of nitric oxide (NO) on the ROS metabolism of peroxisomes. Plants, 8(2), 37.

[145]

Sandalio,L. M., & Romero-Puertas, M. C. (2015). Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Annals of Botany, 116(4), 475–485.

[146]

Smertenko,A. (2017). Can peroxisomes inform cellular response to drought? Trends in Plant Science, 22(12), 1005–1007.

[147]

Sandalio,L. M., Pelaez-Vico, M. A., & Romero-Puertas,M. C. (2020). Peroxisomal metabolism and dynamics at the crossroads between stimulus perception and fast cell responses to the environment. Frontiers in Cell and Developmental Biology, 8, 505.

[148]

Hu,Y. Q., Liu,S., Yuan,H. M., Li, J., Yan,D. W., Zhang,J. F., & Lu, Y. T. (2010). Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3’-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant. Plant, Cell and Environment, 33(10), 1656–1670.

[149]

Chiang,C. M., Chen,S. P., Chen,L. F. O., Chiang,M. C., Chien,H. L., & Lin,K.-H. (2013). Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis. Journal of Plant Biochemistry and Biotechnology, 23(3), 266–277.

[150]

Xu,J., Duan,X., Yang,J., Beeching, J. R., & Zhang,P. (2013). Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiology, 161(3), 1517–1528.

[151]

Liu,J., Fu,C., Li,G., Khan, M. N., & Wu,H. (2021). Ros homeostasis and plant salt tolerance: Plant nanobiotechnology updates. Sustainability, 13(6), 3552.

[152]

Sandalio,L. M., Pelaez-Vico, M. A., Molina-Moya,E., & Romero-Puertas,M. C. (2021). Peroxisomes as redox-signaling nodes in intracellular communication and stress responses. Plant Physiology, 186(1), 22–35.

[153]

Del Rio,L. A., & Lopez-Huertas, E. (2016). Ros generation in peroxisomes and its role in cell signaling. Plant and Cell Physiology, 57(7), 1364–1376.

[154]

Piacentini,D., Corpas, F. J., D’Angeli,S., Altamura,M. M., & Falasca, G. (2020). Cadmium and arsenic-induced-stress differentially modulates Arabidopsis root architecture, peroxisome distribution, enzymatic activities and their nitric oxide content. Plant Physiology and Biochemistry, 148, 312–323.

[155]

Ding,H., Wang,B., Han,Y., & Li, S. (2020). The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants. Journal of Experimental Botany, 71(12), 3405–3416.

[156]

Guan,Q., Liao,X., He,M., Li, X., Wang,Z., Ma,H., & Liu, S. (2017). Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress. PLoS One, 12(10), e0186052.

[157]

Chen,X., Li,D., Guo,J., Wang, Q., Zhang,K., Wang,X., Zhang,J., Luo,C., & Xia, Y. (2024). Identification and analysis of the superoxide dismutase (SOD) gene family and potential roles in high-temperature stress response of herbaceous peony (Paeonia Lactiflora Pall.). Antioxidants, 13(9), 1128.

[158]

Zhou,Y., Liu,S., Yang,Z., Yang, Y., Jiang,L., & Hu,L. (2017). CsCAT3, a catalase gene from Cucumis sativus, confers resistance to a variety of stresses to Escherichia coli. Biotechnology and Biotechnological Equipment, 31(5), 886–896.

[159]

Wang,B., Xue,P., Zhang,Y., Zhan, X., Wu,W., Yu,P., Cao,L., Fu,J., Hong, Y., Shen,X., Sun,L., Cheng,S., & Liu,Q. (2024). OsCPK12 phosphorylates OsCATA and OsCATC to regulate H2O2 homeostasis and improve oxidative stress tolerance in rice. Plant Communications, 5(3), 100780.

[160]

Gorripati,S., Konka,R., Panditi,S. K., Velagapudi,K., & Jeevigunta, N. L. L. (2021). Overexpression of the ascorbate peroxidase through enhancer-trapped pSB111 bar vector for alleviating drought stress in rice. Journal of Basic Microbiology, 61(4), 315–329.

[161]

Li,K., Pang,C. H., Ding,F., Sui, N., Feng,Z. T., & Wang,B. S. (2012). Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. South African Journal of Botany, 78, 235–245.

[162]

Liang,Z., Xu,H., Qi,H., Fei, Y., & Cui,J. (2024). Genome-wide identification and analysis of ascorbate peroxidase (APX) gene family in hemp (Cannabis sativa L.) under various abiotic stresses. PeerJ, 12, e17249.

[163]

Li,J., Li,H., Yang,N., Jiang, S., Ma,C., & Li,H. (2020). Overexpression of a monodehydroascorbate reductase gene from sugar beet M14 increased salt stress tolerance. Sugar Tech, 23(1), 45–56.

[164]

Eltelib,H. A., Fujikawa, Y., & Esaka,M. (2012). Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. South African Journal of Botany, 78, 295–301.

[165]

Hao,Z., Wang,X., Zong,Y., Wen, S., Cheng,Y., & Li,H. (2019). Enzymatic activity and functional analysis under multiple abiotic stress conditions of a dehydroascorbate reductase gene derived from Liriodendron chinense. Environmental and Experimental Botany, 167, 103850.

[166]

Cheng,Q., Zou,X., Wang,Y., Yang, Z., Qiu,X., Wang,S., Wang,W., Yang,D., Kim, H. S., Jia,X., Li,L., & Kwak, S. S. (2024). Overexpression of dehydroascorbate reductase gene IbDHAR1 improves the tolerance to abiotic stress in sweet potato. Transgenic Research.

[167]

Verma,D., & Singh, K. (2021). Understanding role of glutathione reductase gene family in drought and heat stresses in Brassica juncea and B. Rapa. Environmental and Experimental Botany, 190, 104595.

[168]

Wang,B., Ding,H., Chen,Q., Ouyang, L., Li,S., & Zhang,J. (2019). Enhanced tolerance to methyl viologen-mediated oxidative stress via AtGR2 expression from chloroplast genome. Frontiers in Plant Science, 10, 1178.

[169]

Wang,G., Long,Y., Jin,X., Yang, Z., Dai,L., Yang,Y., & Sun, B. (2024). SbMYC2 mediates jasmonic acid signaling to improve drought tolerance via directly activating SbGR1 in sorghum. Theoretical and Applied Genetics, 137(3), 72.

[170]

Poonia,A. K., Mishra, S. K., Sirohi,P., Chaudhary,R., Kanwar, M., Germain,H., & Chauhan,H. (2020). Overexpression of wheat transcription factor (TaHsfA6b) provides thermotolerance in barley. Planta, 252(4), 53.

[171]

Wang,H., Ding,Q., Shao,H., & Wang, H. (2019). Overexpression of KVP5CS1 increases salt tolerance in transgenic tobacco. Pakistan Journal of Botany, 51(3), 831–836.

[172]

Liu,W., Wei,J. W., Shan,Q., Liu, M., Xu,J., & Gong,B. (2024). Genetic engineering of drought- and salt-tolerant tomato via delta1-pyrroline-5-carboxylate reductase S-nitrosylation. Plant Physiology, 195(2), 1038–1052.

[173]

Zhang,L., Wu,M., Teng,Y., Jia, S., Yu,D., Wei,T., & Song, W. (2018). Overexpression of the glutathione peroxidase 5 (RcGPX5) gene from Rhodiola crenulata increases drought tolerance in Salvia miltiorrhiza. Frontiers in Plant Science, 9, 1950.

[174]

Kidwai,M., Dhar,Y. V., Gautam,N., Tiwari, M., Ahmad,I. Z., Asif,M. H., & Chakrabarty, D. (2019). Oryza sativa class III peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification. Journal of Hazardous Materials, 362, 383–393.

[175]

Mittler,R. (2017). ROS are good. Trends in Plant Science, 22(1), 11–19.

[176]

Le Martret,B., Poage,M., Shiel,K., Nugent, G. D., & Dix,P. J. (2011). Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnology Journal, 9(6), 661–673.

[177]

Cao,S., Du,X. H., Li,L. H., Liu, Y. D., Zhang,L., Pan,X., & Lu, H. (2017). Overexpression of Populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants. Russian Journal of Plant Physiology, 64(2), 224–234.

[178]

Gill,S. S., Anjum,N. A., Gill,R., Yadav, S., Hasanuzzaman,M., Fujita,M., Tuteja, N., & Sabat,S. C. (2015). Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research International, 22(14), 10375–10394.

[179]

Li,Z., Han,X., Song,X., Zhang, Y., Jiang,J., Han,Q., Zhuo,R., & Qiao,G. (2017). Overexpressing the Sedum alfredii Cu/Zn superoxide dismutase increased resistance to oxidative stress in transgenic Arabidopsis. Frontiers in Plant Science, 8, 1010.

[180]

Kaouthar,F., Ameny,F. K., Yosra,K., Walid, S., Ali,G., & Faical,B. (2016). Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses. Journal of Plant Physiology, 198, 56–68.

[181]

Wei,C., Cui,Q., Zhang,X.-Q., Zhao, Y.-Q., & Jia,G.-X. (2016). Three P5CS genes including a novel one from Lilium regale play distinct roles in osmotic, drought and salt stress tolerance. Journal of Plant Biology, 59(5), 456–466.

[182]

Surekha,C., Kumari, K. N., Aruna,L. V., Suneetha,G., Arundhati, A., & Kavi Kishor,P. B. (2013). Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell, Tissue and Organ Culture, 116(1), 27–36.

[183]

Yang,D., Ni,R., Yang,S., Pu, Y., Qian,M., Yang,Y., & Yang, Y. (2021). Functional characterization of the Stipa purpurea P5CS gene under drought stress conditions. International Journal of Molecular Sciences, 22(17), 9599.

[184]

Li,J., Phan,T. T., Li,Y. R., Xing, Y. X., & Yang,L. T. (2017). Isolation, transformation and overexpression of sugarcane SoP5CS gene for drought tolerance improvement. Sugar Tech, 20(4), 464–473.

[185]

Ji,C. Y., Kim,Y. H., Kim,H. S., Ke, Q., Kim,G. W., Park,S. C., Kwak,S. S., & Jeong,J. C. (2016). Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco. Plant Physiology and Biochemistry, 106, 118–128.

[186]

Woo,H.-J., Sohn,S.-I., Shin,K.-S., Kim, J.-K., Kim,B.-G., & Lim,M.-H. (2014). Expression of tobacco tocopherol cyclase in rice regulates antioxidative defense and drought tolerance. Plant Cell, Tissue and Organ Culture, 119(2), 257–267.

[187]

Kim,S. E., Lee,C. J., Ji,C. Y., Kim, H. S., Park,S. U., Lim,Y. H., Kwak,S. S., Ahn,M. J., Bian, X., Xie,Y., & Guo,X. (2019). Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced alpha-tocopherol content and abiotic stress tolerance. Plant Physiology and Biochemistry, 144, 436–444.

[188]

Ouyang,S., He,S., Liu,P., Zhang, W., Zhang,J., & Chen,S. (2011). The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Science China Life Sciences, 54(2), 181–188.

[189]

Zhang,Z., Wang,J., Zhang,R., & Huang, R. (2012). The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. The Plant Journal, 71(2), 273–287.

[190]

Duan,M., Feng,H. L., Wang,L. Y., Li, D., & Meng,Q. W. (2012). Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. Journal of Plant Physiology, 169(9), 867–877.

[191]

Saxena,S. C., Salvi,P., Kamble,N. U., Joshi,P. K., Majee,M., & Arora,S. (2020). Ectopic overexpression of cytosolic ascorbate peroxidase gene (APX1) improves salinity stress tolerance in Brassica juncea by strengthening antioxidative defense mechanism. Acta Physiologiae Plantarum, 42(4), 1–14.

[192]

Yeh,H. L., Lin,T. H., Chen,C. C., Cheng, T. X., Chang,H. Y., & Lee,T. M. (2019). Monodehydroascorbate reductase plays a role in the tolerance of Chlamydomonas reinhardtii to photooxidative stress. Plant and Cell Physiology, 60(10), 2167–2179.

[193]

Ren,J., Duan,W., Chen,Z., Zhang, S., Song,X., Liu,T., & Li, Y. (2014). Overexpression of the monodehydroascorbate reductase gene from non-heading Chinese cabbage reduces ascorbate level and growth in transgenic tobacco. Plant Molecular Biology Reporter, 33(4), 881–892.

[194]

Gest,N., Garchery, C., Gautier,H., Jimenez,A., & Stevens, R. (2013). Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol. Plant Biotechnology Journal, 11(3), 344–354.

[195]

Qi,Q., Yanyan, D., Yuanlin,L., Kunzhi,L., Huini,X., & Xudong,S. (2020). Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Science, 299, 110609.

[196]

Chang,L., Sun,H., Yang,H., Wang, X., Su,Z., Chen,F., & Wei, W. (2017). Over-expression of dehydroascorbate reductase enhances oxidative stress tolerance in tobacco. Electronic Journal of Biotechnology, 25, 1–8.

[197]

Yin,L., Wang,S., Eltayeb,A. E., Uddin,M. I., Yamamoto, Y., Tsuji,W., & Tanaka,K. (2010). Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta, 231(3), 609–621.

[198]

Gill,S. S., Anjum,N. A., Hasanuzzaman,M., Gill,R., Trivedi, D. K., Ahmad,I., & Tuteja,N. (2013). Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 70, 204–212.

[199]

Yin,L., Mano,J., Tanaka,K., Wang, S., Zhang,M., Deng,X., & Zhang, S. (2017). High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress. Physiologia Plantarum, 161(2), 211–223.

[200]

Wu,T. M., Lin,W. R., Kao,C. H., & Hong, C. Y. (2015). Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. Plant Molecular Biology, 87(6), 555–564.

[201]

Bela,K., Horvath, E., Galle,A., Szabados,L., Tari,I., & Csiszar,J. (2015). Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses. Journal of Plant Physiology, 176, 192–201.

[202]

Wang,X., Fang,G., Yang,J., & Li, Y. (2017). A thioredoxin-dependent glutathione peroxidase (OsGPX5) is required for rice normal development and salt stress tolerance. Plant Molecular Biology Reporter, 35(3), 333–342.

[203]

Diao,Y., Xu,H., Li,G., Yu, A., Yu,X., Hu,W., Hu,Z., Li,S., & Wang, Y. (2014). Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice. Molecular Biology Reports, 41(8), 4919–4927.

[204]

Luo,X., Wu,J., Li,Y., Nan, Z., Guo,X., Wang,Y., Tian,Y., Wang,Z., & Xia, G. (2013). Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One, 8(1), e54002.

[205]

Sae-Tang,P., Hihara, Y., Yumoto,I., Orikasa,Y., Okuyama, H., & Nishiyama,Y. (2016). Overexpressed superoxide dismutase and catalase act synergistically to protect the repair of PSII during photoinhibition in Synechococcus elongatus PCC 7942. Plant and Cell Physiology, 57(9), 1899–1907.

[206]

Xu,J., Yang,J., Duan,X., Jiang, Y., & Zhang,P. (2014). Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta C(B) rantz). BMC Plant Biology, 14(1), 208.

[207]

Shafi,A., Pal,A. K., Sharma,V., Kalia, S., Kumar,S., Ahuja,P. S., & Singh, A. K. (2017). Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. Plant Molecular Biology Reporter, 35(5), 504–518.

[208]

Shafi,A., Gill,T., Zahoor,I., Ahuja, P. S., Sreenivasulu,Y., Kumar,S., & Singh, A. K. (2019). Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance. Molecular Biology Reports, 46(2), 1985–2002.

[209]

Shin,S. Y., Kim,M. H., Kim,Y. H., Park, H. M., & Yoon,H. S. (2013). Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress. Molecules and Cells, 36(4), 304–315.

RIGHTS & PERMISSIONS

2024 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/