A review of biofumigation effects with plant materials

Yutong Ji, Yi Zhang, Wensheng Fang, Yuan Li, Dongdong Yan, Aocheng Cao, Qiuxia Wang

New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e21.

PDF
New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e21. DOI: 10.1002/npp2.21
COMPREHENSIVE REVIEW

A review of biofumigation effects with plant materials

Author information +
History +

Abstract

Continuous crop cultivation has exacerbated the issue of soil-borne diseases, positioning soil biofumigation as a promising and environmentally friendly control method. This review comprehensively assesses recent advances in the use of Brassicaceae plant materials for biofumigation, specifically focusing on their effectiveness in managing soil-borne pests, enhancing soil fertility, improving the composition of beneficial microbial communities, and boosting crop quality and yield. It also explores the mechanisms underlying biofumigation with Brassicaceae plants, highlighting that the incorporation of exogenous myrosinase can significantly increase isothiocyanate production, thereby enhancing the effectiveness of biofumigation. Among these, plants in the Brassica genus have been studied more extensively and have demonstrated superior results. Furthermore, the potential for biofumigation using plant materials from the Liliaceae, Gramineae, Compositae, and Leguminosae etc., families is evaluated. To address the challenge of inconsistent efficacy observed with different plant materials, future research should focus on optimizing biofumigation techniques according to local conditions. Additionally, combining biofumigation with physical and chemical methods, as well as implementing rotational application strategies, may enhance overall effectiveness.

Keywords

biofumigation / Brassicaceae / crop yield / soil fertility / soil-borne disease

Cite this article

Download citation ▾
Yutong Ji, Yi Zhang, Wensheng Fang, Yuan Li, Dongdong Yan, Aocheng Cao, Qiuxia Wang. A review of biofumigation effects with plant materials. New Plant Protection, 2024, 1(2): e21 https://doi.org/10.1002/npp2.21

References

[1]
Cao, A. C., Liu, X. M., Guo, M. X., Wang, Q. X., Li, Y., Ouyang, C. B., & Yan, D. D. (2017). Incidences of soil-borne diseases and control measures. Plant Protection, 43(02), 6–16. https://doi.org/10.3969/j.issn.0529-1542.2017.02.002
[2]
Al-Shammary, A. A. G., Kouzani, A., Gyasi-Agyei, Y., Gates, W., & Rodrigo-Comino, J. (2020). Effects of solarisation on soil thermal-physical properties under different soil treatments: A review. Geoderma, 363, 114137.
CrossRef Google scholar
[3]
Keinath, A., & Hassell, R. (2014). Control of Fusarium wilt of watermelon by grafting onto bottlegourd or interspecific hybrid squash despite colonization of rootstocks by Fusarium. Plant Disease, 98(2), 255–266.
CrossRef Google scholar
[4]
Ogai, R., Kanda-Hojo, A., & Tsuda, S. (2013). An attenuated isolate of pepper mild mottle virus for cross protection of cultivated green pepper (Capsicum annuum L.) carrying the L3 resistance gene. Crop Protection, 54, 29–34.
CrossRef Google scholar
[5]
Samtani, J. B., Gilbert, C., Weber, J. B., Subbarao, K. V., Goodhue, R. E., & Fennimore, S. A. (2012). Effect of steam and solarization treatments on pest control, strawberry yield, and economic returns relative to methyl bromide fumigation. HortScience, 47(1), 64–70.
CrossRef Google scholar
[6]
Song, Z. X., Yan, D. D., Fang, W. S., Huang, B., Wang, X. L., Zhang, D. Q., Zhu, J. H., Liu, J., Ouyang, C. B., Li, Y., Wang, Q. X., Massart, S., & Cao, A. C. (2020). Maltose and totally impermeable film enhanced suppression of anaerobic soil disinfestation on soilborne pathogens and increased strawberry yield. Sustainability, 12(13), 5456.
CrossRef Google scholar
[7]
Fang, W. S., Wang, Q. X., Yan, D. D., Li, Y., Cao, B. W., Xu, J., & Cao, A. C. (2023). Research progresses and future development trends of soil fumigant dazomet in control of soil-borne diseases. Journal of Plant Protection, 50(01), 40–49. https://doi.org/10.13802/j.cnki.zwbhxb.2023.2021089
[8]
Wang, Q. X., Yan, D. D., Fang, W. S., Xu, J., Li, Y., & Cao, A. C. (2023). Advances in the studies on new soil fumigant dimethyl disulfide. Journal of Plant Protection, 50(1), 32–39. https://doi.org/10.13802/j.cnki.zwbhxb.2023.2021045
[9]
Zhang, D. Q., Yan, D. D., Fang, W. S., Huang, B., Wang, X. L., Wang, X. N., Li, X. Y., Wang, Q., Jin, X., Li, Y., Ouyang, C. B., Wang, Q. X., & Cao, A. C. (2020). Biofumigation-an environment-friendly soil fumigation technology. Chinese Journal of Pesticide Science, 22(1), 11–18. https://doi.org/10.16801/j.issn.1008-7303.2020.0017
[10]
Fang, W. S., Yan, D. D., Wang, X. L., Huang, B., Song, Z. X., Liu, J., Liu, X. M., Wang, Q. X., Li, Y., Ouyang, C. B., & Cao, A. C. (2018). Evidences of N2O emissions in chloropicrin-fumigated soil. Journal of Agricultural and Food Chemistry, 66(44), 11580–11591.
CrossRef Google scholar
[11]
Zhang, D. Q., Yan, D. D., Fang, W. S., Huang, B., Wang, X. L., Wang, X. N., Zhu, J. H., Liu, J., Ouyang, C. B., Li, Y., Wang, Q. X., & Cao, A. C. (2019). Chloropicrin alternated with biofumigation increases crop yield and modifies soil bacterial and fungal communities in strawberry production. Science of the Total Environment, 675, 615–622.
CrossRef Google scholar
[12]
Gao, Z. Y., Yang, S. N., Wang, Z. L., Wang, Z. H., Xi, X. Y., He, J., & Jia, H. J. (2022). Effects of different fumigation on continuous cropping soil in peach orchard. Acta Agriculturae Zhejiangensis, 34(10), 2251–2258. https://doi.org/10.3969/j.issn.1004-1524
[13]
Tagele, S. B., Kim, R. H., & Shin, J. H. (2021). Interactions between Brassica biofumigants and soil microbiota: Causes and impacts. Journal of Agricultural and Food Chemistry, 69(39), 11538–11553.
CrossRef Google scholar
[14]
Szczyglowska, M., Piekarska, A., Konieczka, P., & Namieśnik, J. (2011). Use of Brassica plants in the phytoremediation and biofumigation processes. International Journal of Molecular Sciences, 12(11), 7760–7771.
CrossRef Google scholar
[15]
Matthiessen, J., Warton, B., & Shackleton, M. (2004). The importance of plant maceration and water addition in achieving high Brassica-derived isothiocyanate levels in soil. Agroindustria, 3(3), 277–281.
[16]
Gimsing, A., & Kirkegaard, J. (2006). Glucosinolate and isothiocyanate concentration in soil following incorporation of Brassica biofumigants. Soil Biology and Biochemistry, 38(8), 2255–2264.
CrossRef Google scholar
[17]
Peng, P., Qing, Z. X., Tian, Y., & Deng, F. M. (2019). Research progress on motivating factors of glucosinolate in Cruciferae. Journal of Food Safety & Quality, 10(4), 886–891.
[18]
Xiu, L. L., & Niu, K. L. (2004). Glucosinolates and its degraded products in cruciferous plants. Journal of Zhejiang University of Science and Technology, 16(3), 187–189.
[19]
Zhu, R. J., Fang, Y. W., Ye, Q. W., Hou, X. Y., Yang, G., Yang, Y. Q., & Liu, S. (2023). Screening, identification and enzymatic properties of myrosinase-producing sphingobacterium RJ35. Food Science, 44(6), 214–219. https://doi.org/10.7506/spkx1002-6630-20220821-251
[20]
Wittstock, U., & Burow, M. (2010). Glucosinolate breakdown in arabidopsis: Mechanism, regulation and biological significance. The Arabidopsis book/American Society of Plant Biologists, 8, e0134.
CrossRef Google scholar
[21]
Koroleva, O. A., Gibson, T. M., Cramer, R., & Stain, C. (2010). Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell death at early stages of differentiation. The Plant Journal, 64(3), 456–469.
CrossRef Google scholar
[22]
Hoglund, A. S., Lenman, M., Falk, A., & Rask, L. (1991). Distribution of myrosinase in rapeseed tissues. Plant Physiology, 95(1), 213–221.
CrossRef Google scholar
[23]
La, G. X., & Fang, P. (2008). Research overview in degradation of glucosinolates. Food Science, 29(1), 350–354.
[24]
Yang, Y. J., Li, S. Y., Hu, G. W., Liao, X. J., Hu, X. S., & Zhang, Y. (2011). Research progress on degradation pathways and products of glucosinolates. Acta Botanica Boreali-Occidentalia Sinica, 31(7), 1490–1496.
[25]
Brown, P. D., & Morra, M. J. (1997). Control of soil-borne plant pests using glucosinolate-containing plants. Advances in Agronomy, 61, 167–231.
CrossRef Google scholar
[26]
Gu, Z. X., Guo, Q. H., & Gu, Y. J. (2012). Factors influencing glucoraphanin and sulforaphane formation in Brassica plants: A review. Journal of Integrative Agriculture, 11(11), 1804–1816.
CrossRef Google scholar
[27]
Wang, L. L., Jiang, H., Qiu, Y. J., Dong, Y. Y., Hamouda, H. I., Balah, M. A., & Mao, X. Z. (2022). Biochemical characterization of a novel myrosinase Rmyr from Rahnella inusitata for high-level preparation of sulforaphene and sulforaphane. Journal of Agricultural and Food Chemistry, 70(7), 2303–2311.
CrossRef Google scholar
[28]
Wittstock, U., Kliebenstein, D. J., Lambrix, V., Reichelt, M., & Gershenzon, J. (2003). Chapter five Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Advances in Phytochemistry, 37, 101–125.
CrossRef Google scholar
[29]
Kawakishi, S., & Kaneko, T. (1987). Interaction of proteins with allyl isothiocyanate. Journal of Agricultural and Food Chemistry, 35(1), 85–88.
CrossRef Google scholar
[30]
Hanschen, F. S., & Winkelmann, T. (2020). Biofumigation for fighting replant disease-a review. Agronomy, 10(3), 425.
CrossRef Google scholar
[31]
Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5–51.
CrossRef Google scholar
[32]
Kissen, R., Rossiter, J. T., & Bones, A. M. (2009). The ‘mustard oil bomb’: Not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochemistry Reviews, 8(1), 69–86.
CrossRef Google scholar
[33]
Tripathi, M. K., & Mishra, A. S. (2007). Glucosinolates in animal nutrition: A review. Animal Feed Science and Technology, 132(1–2), 1–27.
CrossRef Google scholar
[34]
Zhang, K. X., Zhao, H. Y., & Li, J. (2017). Recent research advances on glucosinolate-myrosinase defense system. Plant Physiology Journal, 53(12), 2069–2077. https://doi.org/10.13592/j.cnki.ppj.2017.0453
[35]
Sundaram, M. K., Preetha, R., Haque, S., Akhter, N., Khan, S., Ahmad, S., & Hussain, A. (2022). Dietary isothiocyanates inhibit cancer progression by modulation of epigenome. Seminars in Cancer Biology, 83, 353–376.
CrossRef Google scholar
[36]
Clarke, D. B. (2010). Glucosinolates, structures and analysis in food. Analytical Methods, 2(4), 310–325.
CrossRef Google scholar
[37]
Tierens, K. F. J., Thomma, B. P., Brouwer, M., Schmidt, J., Kistner, K., Porzel, A., Mauch-Mani, B., Cammue, B. P. A., & Broekaert, W. F. (2001). Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiology, 125(4), 1688–1699.
CrossRef Google scholar
[38]
Zhang, J., Feng, C., Tan, X., Hagedoorn, P. L., Gu, C., Xu, H., & Zhou, X. (2019). Effect of aliphatic diamine spacer length on enzymatic performance of myrosinase immobilized on chitosan microsphere and its application for sulforaphene production. Journal of Biotechnology, 299, 79–85.
CrossRef Google scholar
[39]
Yang, Y., Yu, H., & Zhou, X. (2020). Covalent immobilization of thioglucosidase from radish seeds for continuous preparation of sulforaphene. Chemical Engineering Research and Design, 155, 146–155.
CrossRef Google scholar
[40]
Youseif, S. H., Abdel-Fatah, H. M., & Khalil, M. S. (2022). A new source of bacterial myrosinase isolated from endophytic Bacillus sp. NGB-B10, and its relevance in biological control activity. World Journal of Microbiology and Biotechnology, 38(11), 215.
CrossRef Google scholar
[41]
Sakorn, P., Rakariyatham, N., Niamsup, H., & Nongkunsarn, P. (2002). Rapid detection of myrosinase-producing fungi: A plate method based on opaque barium sulphate formation. World Journal of Microbiology and Biotechnology, 18(1), 73–74.
CrossRef Google scholar
[42]
Ye, Q., Fang, Y., Li, M., Mi, H., Liu, S., Yang, G., Lu, J., Zhao, Y., Liu, Q., Zhang, W., & Hou, X. (2022). Characterization of a novel myrosinase with high activity from marine bacterium Shewanella baltica Myr-37. International Journal of Molecular Sciences, 23(19), 11258.
CrossRef Google scholar
[43]
Sun, D., Ma, Y., An, X., Gu, Z., Wang, G., & Wang, Q. (2014). Effects of metal ions and protectants on myrosinase activity and purification of myrosinase from Trichederma atroviride T155. Microbiology China, 41(009), 1807–1815. https://doi.org/10.13344/j.microbiol.china.130893
[44]
Albaser, A., Kazana, E., Bennett, M. H., Cebeci, F., Luang-In, V., Spanu, P. D., & Rossiter, J. T. (2016). Discovery of a bacterial glycoside hydrolase family 3 (GH3) β-glucosidase with myrosinase activity from a Citrobacter strain isolated from soil. Journal of Agricultural and Food Chemistry, 64(7), 1520–1527.
CrossRef Google scholar
[45]
Tie, Y., Zhu, W., Zhang, C., Yin, L., Zhang, Y., Liu, L., & Yuan, H. (2021). Identification of two myrosinases from a Leclercia adecarboxylata strain and investigation of its tolerance mechanism to glucosinolate hydrolysate. Journal of Agricultural and Food Chemistry, 69(47), 14151–14164.
CrossRef Google scholar
[46]
Angus, J. F., Gardner, P. A., Kirkegaard, J. A., & Desmarchelier, J. M. (1994). Biofumigation: Isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant and Soil, 162(1), 107–112.
CrossRef Google scholar
[47]
Larkin, R. P., & Griffin, T. S. (2007). Control of soilborne potato diseases using Brassica green manures. Crop Protection, 26(7), 1067–1077.
CrossRef Google scholar
[48]
Baysal-Gurel, F., Liyanapathiranage, P., & Addesso, K. M. (2020). Effect of Brassica crop-based biofumigation on soilborne disease suppression in woody ornamentals. Canadian Journal of Plant Pathology, 42(1), 94–106.
CrossRef Google scholar
[49]
Yulianti, T., Sivasithamparam, K., & Turner, D. W. (2007). Saprophytic and pathogenic behaviour of R. solani AG2-1 (ZG-5) in a soil amended with Diplotaxis tenuifolia or Brassica nigra manures and incubated at different temperatures and soil water content. Plant and Soil, 294(1-2), 277–289.
CrossRef Google scholar
[50]
Fan, C. M., Liu, J. Y., Wu, Y. X., Xiong, G. R., & He, Y. Q. (2007). Screening of several plants suppressing soil borne plant fungi by biofumigation. Journal of Yunnan Agricultural University, 22(5), 654–658. https://doi.org/10.16211/j.issn.1004-390x(n).2007.05.007
[51]
Sun, D., He, Y., Shen, D., Dou, D., & Tian, Y. (2023). Inhibiting effect of biological fumigation of mustard against Phytophthora nicotianae. Chinese Journal of Eco-Agriculture, 31(4), 567–576. https://doi.org/10.12357/cjea.20220519
[52]
Wang, D., Yang, Z., Qiao, S., Kang, C., Yuan, R., Yao, X., Hu, X., & Li, S. (2016). Effects of bio fumigation on inhibition of cucumber Fusarium wilt, quality and yield of cucumber. Chinese Agricultural Science Bulletin, 32(28), 125–130.
[53]
Mowlick, S., Yasukawa, H., Inoue, T., Takehara, T., Kaku, N., Ueki, K., & Ueki, A. (2013). Suppression of spinach wilt disease by biological soil disinfestation incorporated with Brassica juncea plants in association with changes in soil bacterial communities. Crop Protection, 54, 185–193.
CrossRef Google scholar
[54]
Li, S., Zheng, C., Zhang, R., Yang, Z., Qu, H., Liu, T., Yuan, R., Yao, X., Wang, X., Xu, N., & Zhang, C. (2017). Effect of biofumigation on yield and verticillium wilt incidence of continuous eggplant in greenhous. Journal of Northeast Agricultural University, 48(5), 35–41. https://doi.org/10.19720/j.cnki.issn.1005-9369.2017.05.005
[55]
Li, M. S., Li, S. D., Miao, Z. Q., Guo, R. J., & Zhao, Z. Y. (2006). Biofumigation for management of soilborne plant diseases. Chinese Journal of Biological Control, 22(4), 296–302. https://doi.org/10.16409/j.cnki.2095-039x.2006.04.009
[56]
Larkin, R. P., Honeycutt, C. W., & Olanya, O. M. (2011). Management of Verticillium wilt of potato with disease-suppressive green manures and as affected by previous cropping history. Plant Disease, 95(5), 568–576.
CrossRef Google scholar
[57]
Zhao, W., Guo, Q., Li, S., Wang, Y., Lu, X., Wang, P., Su, Z., Zhang, X., & Ma, P. (2019). Control efficacy of broccoli residues on cotton Verticillium wilt and its effect on soil bacterial community at different growth stages. Scientia Agricultura Sinica, 52(24), 4505–4517. https://doi.org/10.3864/j.issn.0578-1752.2019.24.006
[58]
Yuan, H. (2023). Preparation and utilization of soil fumigant for broccoli residue. [Master’s thesis, Inner Mongolia Agricultural University]. https://doi.org/10.27229/d.cnki.gnmnu.2023.000100
[59]
Zavatta, M., Muramoto, J., Milazzo, E., Koike, S., Klonsky, K., Goodhue, R., & Shennan, C. (2021). Integrating broccoli rotation, mustard meal, and anaerobic soil disinfestation to manage verticillium wilt in strawberry. Crop Protection, 146, 105659.
CrossRef Google scholar
[60]
Shetty, K. G., Subbarao, K. V., Huisman, O. C., & Hubbard, J. C. (2000). Mechanism of broccoli-mediated Verticillium wilt reduction in cauliflower. Phytopathology, 90(3), 305–310.
CrossRef Google scholar
[61]
Mojtahedi, H., Santo, G. S., Hang, A. N., & Wilson, J. (1991). Suppression of root-knot nematode populations with selected rapeseed cultivars as green manure. Journal of Nematology, 23(2), 170–174.
[62]
Aires, A., Carvalho, R., Da Conceição Barbosa, M., & Rosa, E. (2009). Suppressing potato cyst nematode, Globodera rostochiensis, with extracts of Brassicacea plants. American Journal of Potato Research, 86(4), 327–333.
CrossRef Google scholar
[63]
Lord, J. S., Lazzeri, L., Atkinson, H. J., & Urwin, P. E. (2011). Biofumigation for control of pale potato cyst nematodes: Activity of brassica leaf extracts and green manures on Globodera pallida in vitro and in soil. Journal of Agricultural and Food Chemistry, 59(14), 7882–7890.
CrossRef Google scholar
[64]
Salem, M. F., & Mahdy, M. E. (2015). Suppression of root-knot nematode through innovative mustard biofumigation. Future of Food: Journal on Food, Agriculture and Society, 3(2), 41–50.
[65]
Jin, N., Wang, X., Liu, Q., Peng, D., Peng, H., & Jian, H. (2021). Effects of biofumigation on root-knot nematodes and soil nematode community. Biotechnology Bulletin, 37(7), 156–163. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2021-0670
[66]
Li, S., Li, M., Miao, Z., & Guo, R. (2007). Soil biofumigation for management of vegetable root-knot nematode disease. Plant Protection, 33(4), 68–71.
[67]
Anita, B., Selvaraj, N., & Vijayakumar, R. M. (2011). Associative effect of biofumigation and biocontrol agents in management of root knot nematode Meloidogyne hapla in Gerbera. Journal of Applied Horticulture, 13(2), 154–156.
CrossRef Google scholar
[68]
Curto, G., Dallavalle, E., Matteo, R., & Lazzeri, L. (2016). Biofumigant effect of new defatted seed meals against the southern root-knot nematode, Meloidogyne Incognita. Annals of Applied Biology, 169(1), 17–26.
CrossRef Google scholar
[69]
Ngala, B. M., Haydock, P. P., Woods, S., & Back, M. A. (2015). Biofumigation with Brassica juncea, Raphanus sativus and Eruca sativa for the management of field populations of the potato cyst nematode Globodera pallida. Pest Management Science, 71(5), 759–769.
CrossRef Google scholar
[70]
Ngala, B. M., Woods, S. R., & Back, M. A. (2015). Sinigrin degradation and G. pallida suppression in soil cultivated with brassicas under controlled environmental conditions. Applied Soil Ecology, 95, 9–14.
CrossRef Google scholar
[71]
Aydınlı, G., & Mennan, S. (2018). Biofumigation studies by using Raphanus sativus and Eruca sativa as a winter cycle crops to control root-knot nematodes. Brazilian Archives of Biology and Technology, 61(0), e18180249.
CrossRef Google scholar
[72]
Curto, G., Dallavalle, E., De Nicola, G. R., Lazzeri, L., De Nicola, G. R., Dallavalle, E., & Lazzeri, L. (2012). Evaluation of the activity of dhurrin and sorghum towards Meloidogyne incognita. Nematology, 14(6), 759–769.
CrossRef Google scholar
[73]
Matthiessen, J. N., & Kirkegaard, J. A. (2006). Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, 25(3), 235–265.
CrossRef Google scholar
[74]
Wieczorek, R., Zydlik, Z., Wolna-Maruwka, A., Kubiak, A., Bocianowski, J., & Niewiadomska, A. (2024). The response of the mycobiome to the biofumigation of replanted soil in a fruit tree nursery. Agronomy, 14(9), 1961.
CrossRef Google scholar
[75]
Sennett, L., Burton, D. L., Goyer, C., & Zebarth, B. J. (2021). Influence of chemical fumigation and biofumigation on soil nitrogen cycling processes and nitrifier and denitrifier abundance. Soil Biology and Biochemistry, 162, 108421.
CrossRef Google scholar
[76]
Wang, Q., Ma, Y., Yang, H., & Chang, Z. (2014). Effect of biofumigation and chemical fumigation on soil microbial community structure and control of pepper Phytophthora blight. World Journal of Microbiology and Biotechnology, 30(2), 507–518.
CrossRef Google scholar
[77]
Tagele, S. B., Kim, R. H., Jeong, M., Jung, D. R., Lee, D., & Shin, J. H. (2022). An optimized biofumigant improves pepper yield without exerting detrimental effects on soil microbial diversity. Chemical and Biological Technologies in Agriculture, 9(1), 99.
CrossRef Google scholar
[78]
Galletti, S., Fornasier, F., Cianchetta, S., & Lazzeri, L. (2015). Soil incorporation of brassica materials and seed treatment with Trichoderma harzianum: Effects on melon growth and soil microbial activity. Industrial Crops and Products, 75, 73–78.
CrossRef Google scholar
[79]
Zaccardelli, M., Villecco, D., Celano, G., & Scotti, R. (2013). Soil amendment with seed meals: Short term effects on soil respiration and biochemical properties. Applied Soil Ecology, 72, 225–231.
CrossRef Google scholar
[80]
Wang, Q., Chang, Z., Wang, G., & Ma, Y. (2015). Integration of Pseudomonas aeruginosa with biofumigation to control phytophthora blight of pepper. Jiangsu Journal of Agricultural Sciences, 31(02), 290–297. https://doi.org/10.3969/j.issn.1000-4440.2015.02.011
[81]
Walker, B. A., Powell, S. M., Tegg, R. S., Doyle, R. B., Hunt, I. G., & Wilson, C. R. (2023). Ten years of green manuring and biofumigation alters soil characteristics and microbiota. Applied Soil Ecology, 187, 104836.
CrossRef Google scholar
[82]
Walker, B. A., Powell, S. M., Tegg, R. S., Doyle, R. B., Hunt, I. G., & Wilson, C. R. (2022). Soil microbial community dynamics during ryegrass green manuring and brassica biofumigation. Applied Soil Ecology, 179, 104600.
CrossRef Google scholar
[83]
Meng, L., Yao, X., Yang, Z., Zhang, R., Zhang, C., Wang, X., Xu, N., Li, S., Liu, T., & Zheng, C. (2018). Changes in soil microbial diversity and control of Fusarium oxysporum in continuous cropping cucumber greenhouses following biofumigation. Emirates Journal of Food and Agriculture, 30(8), 644–653.
CrossRef Google scholar
[84]
Sennett, L. B., Goyer, C., Burton, D. L., Zebarth, B. J., & Whitney, S. (2022). Chemical fumigation and biofumigation alter soil bacterial community diversity and composition. FEMS Microbiology Ecology, 98(4), fiac026.
CrossRef Google scholar
[85]
Rahman, M., Islam, T., Jett, L., & Kotcon, J. (2021). Biocontrol agent, biofumigation, and grafting with resistant rootstock suppress soil-borne disease and improve yield of tomato in West Virginia. Crop Protection, 145, 105630.
CrossRef Google scholar
[86]
Meng, L., Zhang, Y., Yu, S., Ogundeji, A. O., Zhang, S., & Li, S. (2022). Temporal assessment of biofumigation using mustard and oilseed rape tissues on Verticillium dahliae, soil microbiome and yield of eggplant. Agronomy, 12(12), 2963.
CrossRef Google scholar
[87]
Seigies, A. T., & Pritts, M. (2006). Cover crop rotations alter soil microbiology and reduce replant disorders in strawberry. HortScience, 41(5), 1303–1308.
CrossRef Google scholar
[88]
Hansen, Z. R., & Keinath, A. P. (2013). Increased pepper yields following incorporation of biofumigation cover crops and the effects on soilborne pathogen populations and pepper diseases. Applied Soil Ecology, 63, 67–77.
CrossRef Google scholar
[89]
Rao, V. G., Dhutraj, D. N., Navgire, K. D., Apet, K. T., & Ambadkar, C. V. (2021). Effect of Biofumigation on Fusarium wilt of Eggplant caused by Fusarium oxysporum f. sp. melongenae. International Journal of Physical and Social Sciences, 33(16), 237–245.
CrossRef Google scholar
[90]
Rudolph, R. E., Sams, C., Steiner, R., Thomas, S. H., Walker, S., & Uchanski, M. E. (2015). Biofumigation performance of four Brassica crops in a green Chile pepper (Capsicum annuum) rotation system in southern New Mexico. HortScience, 50(2), 247–253.
CrossRef Google scholar
[91]
Porras, M., Barrau, C., Romero, E., Zurera, C., & Romero, F. (2008). Effect of biofumigation with Brassica carinata and soil solarization on Phytophthora spp. and strawberry yield. VI International Strawberry Symposium, 842, 969–972.
CrossRef Google scholar
[92]
Ma, Y., Hu, A., Yang, H., Chang, Z., Xu, Y., & Zhang, J. (2013). Effects of biofumigation with rapeseed meal on disease control of Phytophthora blight of chilli pepper. Scientia Agricultura Sinica, 46(22), 4698–4706. https://doi.org/10.3864/j.issn.0578-1752.2013.22.007
[93]
Cao, A., Zhang, D., Fang, W., Song, Z., Ren, L., Li, Q., Li, W., Wang, Q., Yan, D., Li, Y., Jin, X., & Hao, Z. (2023). Progresses and challenges in soil-borne disease prevention and control technology. Plant Protection, 49(5), 260–269. https://doi.org/10.16688/j.zwbh.2023367
[94]
Deberdt, P., Perrin, B., Coranson-Beaudu, R., Duyck, P. F., & Wicker, E. (2012). Effect of Allium fistulosum extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Disease, 96(5), 687–692.
CrossRef Google scholar
[95]
Elshahawy, I. E., & Saied, N. M. (2021). Reduced sclerotial viability of Stromatinia cepivora and control of white rot disease of onion and garlic by means of soil bio-solarization. European Journal of Plant Pathology, 160(3), 519–540.
CrossRef Google scholar
[96]
Gong, B., Zhang, L., Sui, S., Wang, X., Wei, M., Shi, Q., Yang, F., & Li, Y. (2016). Effects of garlic straw application on controlling tomato root-knot nematode disease and rhizospheric microecology. Scientia Agricultura Sinica, 49(05), 933–941. https://doi.org/10.3864/j.issn.0578-1752.2016.05.013
[97]
Stapleton, J. J., Summers, C. G., Mitchell, J. P., & Prather, T. S. (2010). Deleterious activity of cultivated grasses (Poaceae) and residues on soilborne fungal, nematode and weed pests. Phytoparasitica, 38(1), 61–69.
CrossRef Google scholar
[98]
Huang, W., Zhang, G., Zhang, C., Zhang, D., Wang, B., & Peng, D. (2010). Managment technology of Meloidogyne incognita on greenhouse vegetables using biofumigation combined with solarization. Plant Protection, 36(01), 139–142.
[99]
Djian-Caporalino, C., Mateille, T., Bailly-Bechet, M., Marteu, N., Fazari, A., Bautheac, P., Raptopoulo, A., Duong, L. V., Tavoillot, J., Martiny, B., Goillon, C., & Castagnone-Sereno, P. (2019). Evaluating sorghums as green manure against root-knot nematodes. Crop Protection, 122, 142–150.
CrossRef Google scholar
[100]
Zhang, M. (2022). Effects of continuous rolling ryegrass on characteristics of continuous tobacco planting soil and tobacco growth and development. [Master’s thesis, Henan Agricultural University]. https://doi.org/10.27117/d.cnki.ghenu.2022.000349
[101]
Liu, X., Zhang, S., Liu, G., Qiu, H., Wang, D., Zhang, J., & Shen, Q. (2015). Control of continuous potato monoculture barrier via biological soil disinfestation method in Yellow River irrigation areas of central Gansu Province, Northwest China. Chinese Journal of Applied Ecology, 26(04), 1205–1214. https://doi.org/10.13287/j.1001-9332.2015.0034
[102]
Muiru, W. M., Ogumo, E., Kimenju, J. W., & Mukunya, D. (2017). Potential of green manure crops in suppressing root knot nematodes in French beans. International Journal of Applied Agricultural Research, 11(1), 90–97.
[103]
Tsay, T. T., Wu, S. T., & Lin, Y. Y. (2004). Evaluation of Asteraceae plants for control of Meloidogyne incognita. Journal of Nematology, 36(1), 36–41.
[104]
Wang, X. F., Xu, S. Z., Wang, M., Duan, Y. N., Wang, H. Y., Sheng, Y. F., & Mao, Z. Q. (2018). Effects of soil biofumigation using Tateges erecta powder on growth of Malus hupehensis Rehd. seedlings and soil microorganisms in old apple orchard soil. Acta Pedologica Sinica, 55(01), 213–224. https://doi.org/10.11766/trxb201708220186
[105]
Wang, X., Xiang, K., Wang, Y., Li, Q., Jiang, W., Sheng, Y., Wang, H., Chen, X., Yin, C., & Mao, Z. (2019). Effects of Tagetes erecta biofumigation on apple replanted soil environment and physiological characteristics of Malus hupehensis seedlings. Acta Horticulturae Sinica, 46(12), 2383–2396. https://doi.org/10.16420/j.issn.0513-353x.2018-0851
[106]
Li, Y., Li, X., Wang, L., Feng, J., Zhang, Y., & Yin, Z. (2021). Effect of biofumigation with marigold stalks on prokaryotic microbial community in tobacco rhizosphere soil. Tobacco Science & Technology, 54(04), 15–22. https://doi.org/10.16135/j.issn1002-0861.2020.0258
[107]
Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Olaniran, A. F., Aremu, C., Ejue, W. S., Iranloye, Y. M., & Adegbite, K. (2022). Poultry and green manures effects on soil properties, and sorghum performance, and quality. Communications in Soil Science and Plant Analysis, 53(4), 463–477.
CrossRef Google scholar
[108]
Ochiai, N., Powelson, M. L., Dick, R. P., & Crowe, F. J. (2007). Effects of green manure type and amendment rate on Verticillium wilt severity and yield of Russet Burbank potato. Plant Disease, 91(4), 400–406.
CrossRef Google scholar
[109]
Wang, J., Li, S., & Shi, Q. (2020). Effect of Zanthoxylum bungeanum seeds (Cake) fumigation on control of root-knot nematode as well as growth and development of tomato in greenhouse. Shandong Agricultural Sciences, 52(01), 120–125. https://doi.org/10.14083/j.issn.1001-4942.2020.01.022
[110]
Wang, M., Yao, Q., Yang, J., & Hu, X. (2014). Inhibition of plant extracts and residues on Verticillium dahliae. Journal of Northwest Forestry University, 42(04), 137–142. https://doi.org/10.13207/j.cnki.jnwafu.2014.04.022
[111]
Cheng, X. (2023). Study on inhibitory activity and mechanism of Cleome spinosa on Botrytis cinerea in strawberry. [Master’s thesis, Northeast Agricultural University]. https://doi.org/10.27010/d.cnki.gdbnu.2023.000659
[112]
Clossais-Besnard, N., & Larher, F. (1991). Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. Journal of the Science of Food and Agriculture, 56(1), 25–38.
CrossRef Google scholar
[113]
Kirkegaard, J. A., & Sarwar, M. (1998). Biofumigation potential of brassicas. Plant and Soil, 201(1), 71–89.
CrossRef Google scholar
[114]
Malik, M. S., Riley, M. B., Norsworthy, J. K., & Bridges Jr, W. (2010). Glucosinolate profile variation of growth stages of wild radish (Raphanus raphanistrum). Journal of Agricultural and Food Chemistry, 58(6), 3309–3315.
CrossRef Google scholar
[115]
Li, H., Liu, F., Gong, Z., Jin, X., & Huang, S. (2012). Effect of straw return back to paddy field on occurrence of rice major diseases. Crop Research, 26(01), 7–10. https://doi.org/10.3969/j.issn.1001-5280.2012.01.03
[116]
Chen, D., Zebarth, B. J., Goyer, C., Comeau, L. P., Nahar, K., & Dixon, T. (2022). Effect of biofumigation on population densities of Pratylenchus spp. and Verticillium spp. and potato yield in Eastern Canada. American Journal of Potato Research, 99(3), 229–242.
CrossRef Google scholar
[117]
Morris, E. K., Fletcher, R., & Veresoglou, S. D. (2020). Effective methods of biofumigation: A meta-analysis. Plant and Soil, 446(1-2), 379–392.
CrossRef Google scholar
[118]
Sarwar, M., & Kirkegaard, J. A. (1998). Biofumigation potential of brassicas: II. Effect of environment and ontogeny on glucosinolate production and implications for screening. Plant and Soil, 201(1), 91–101.
CrossRef Google scholar
[119]
Ahmed, N. A. K., Dechamp-Guillaume, G., & Seassau, C. (2020). Biofumigation to protect oilseed crops: Focus on management of soilborne fungi of sunflower. Oilseeds & fats Crops and Lipids, 27, 59.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/