The biocontrol strain Bacillus mojavensis KRS009 confers resistance to cotton Verticillium wilt and improves tolerance to salt stress

Fuhua Zhao , Dan Wang , Huizi Liu , Yujia Shan , Hong-Yue Qi , Xiaofeng Dai , Jieyin Chen , Didier Lesueur , Dongfei Han , Xiaojun Zhang , Dandan Zhang

New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e20

PDF
New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e20 DOI: 10.1002/npp2.20
ORIGINAL PAPER

The biocontrol strain Bacillus mojavensis KRS009 confers resistance to cotton Verticillium wilt and improves tolerance to salt stress

Author information +
History +
PDF

Abstract

Biological control has gained increasing attention as a strategy to address biotic and abiotic stresses in crops. In this study, we identified the strain KRS009 as Bacillus mojavensis through morphological identification and multilocus sequence analysis. KRS009 exhibited broad-spectrum antifungal activity against various phytopathogenic fungi by secreting soluble and volatile compounds. Additionally, the physio-biochemical traits of strain KRS009 were characterized, including its growth-promoting capabilities and active enzymes. Notably, KRS009 demonstrated the capacity for biofilm formation and exhibited tolerance to saline-alkali conditions. The biological security evaluation confirmed the safety of KRS009 for both humans and plants. Furthermore, strain KRS009 was found to trigger plant immunity by inducing systemic resistance through salicylic acid- and jasmonic acid-dependent signaling pathways. Greenhouse experiments conducted on cotton plants proved that the treatment with strain KRS009 effectively protected cotton against Verticillium wilt caused by Verticillium dahliae and promoted the growth of cotton under salt stress. These findings highlight the potential of B. mojavensis KRS009 as a promising biocontrol and biofertilizer agent for promoting plant growth, combating fungal diseases and mitigating salt stress in plants.

Keywords

Bacillus mojavensis KRS009 / biocontrol / plant immunity / salt stress / verticillium wilt

Cite this article

Download citation ▾
Fuhua Zhao, Dan Wang, Huizi Liu, Yujia Shan, Hong-Yue Qi, Xiaofeng Dai, Jieyin Chen, Didier Lesueur, Dongfei Han, Xiaojun Zhang, Dandan Zhang. The biocontrol strain Bacillus mojavensis KRS009 confers resistance to cotton Verticillium wilt and improves tolerance to salt stress. New Plant Protection, 2024, 1(2): e20 DOI:10.1002/npp2.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Man, M., Zhu, Y., Liu, L., Luo, L., Han, X., Qiu, L., Li, F., Ren, M., & Xing, Y. (2022). Defense mechanisms of cotton Fusarium and Verticillium wilt and comparison of pathogenic response in cotton and humans. International Journal of Molecular Sciences, 23(20), 12217.

[2]

Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G., Chao, D. Y., Li, J., Wang, P. Y., Qin, F., Li, J., Ding, Y., Shi, Y., Wang, Y., Yang, Y., Guo, Y., & Zhu, J. K. (2020). Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 63(5), 635–674.

[3]

Billah, M., Li, F., & Yang, Z. (2021). Regulatory network of cotton genes in response to salt, drought and wilt diseases (Verticillium and Fusarium): Progress and perspective. Frontiers in Plant Science, 12, 759245.

[4]

Peng, Z., Zulfiqar, T., Yang, H., Wang, M., & Zhang, F. (2024). Effect of Arbuscular Mycorrhizal Fungi (AMF) on photosynthetic characteristics of cotton seedlings under saline-alkali stress. Scientific Reports, 14(1), 8633.

[5]

Bichel, A., Oelbermann, M., Voroney, P., & Echarte, L. (2016). Sequestration of native soil organic carbon and residue carbon in complex agroecosystems. Carbon Management, 7(5–6), 261–270.

[6]

Qu, X. (2008). Advancement and prospect of farmland drainage in China. Journal of Irrigation and Drainage, 27(1), 108–111.

[7]

Yang, L., Tan, L., Zhang, F., Gale, W. J., Cheng, Z., & Sang, W. (2018). Duration of continuous cropping with straw return affects the composition and structure of soil bacterial communities in cotton fields. Canadian Journal of Microbiology, 64(3), 167–181.

[8]

Zhang, D. D., Jiang, J. P., & Zhu, B. C. (2014). Optimization of fermentation conditions of a biocontrol bacterial isolate Bacillus z-5 against cotton Verticillium wilt. Cotton Science, 26(1), 10–17. https://doi.org/10.3969/j.issn.1002-7807.2014.01.002

[9]

Li, Q. S., Xie, Z. M., Liu, Z., Zhang, G. L., Wu, D. M., & Tian, Y. (2018). Screening and identification of antagonistic bacterium H14 against Verticillium dahliae Kleb and it antagonistic mechanisms. Plant Protection, 45(6), 1204–1211. https://doi.org/10.13802/j.cnki.zwbhxb.2018.2017091

[10]

Qiu, D. (2010). Current status and development strategy for biological control of plant diseases in China. Plant Protection, 36(4), 15–18. https://doi.org/10.3969/j.issn.0529-1542.2010.04.004

[11]

Yao, Y. Y., & Ying, H. (2021). Progress in control of soil-borne diseases by rhizosphere microorganisms under intercropping. Wuhan Institute of Technology, 43(4), 381–390. https://doi.org/10.19843/j.cnki.CN42-1779/TQ.202101007

[12]

Ehling-Schulz, M., Lereclus, D., & Koehler, T. M. (2019). The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiology Spectrum, 7(3), 10–1128.

[13]

Ansari, F. A., Ahmad, I., & Pichtel, J. (2019). Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Applied Soil Ecology, 143, 45–54.

[14]

Wang, B., Lei, X., Chen, J., Li, W., Long, Y., & Wang, W. (2022). Antifungal activities of Bacillus mojavensis BQ-33 towards the kiwifruit black spot disease caused by the fungal pathogen Didymella glomerata. Microorganisms, 10(10), 2085.

[15]

Slama, H. B., Cherif-Silini, H., Chenari Bouket, A., Qader, M., Silini, A., Yahiaoui, B., Alenezi, F. N., Luptakova, L., Triki, M. A., Vallat, A., Oszako, T., Rateb, M. E., & Belbahri, L. (2019). Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Frontiers in Microbiology, 9, 3236.

[16]

Liu, Y., Xun, W., Chen, L., Xu, Z., Zhang, N., Feng, H., Zhang, Q., & Zhang, R. (2022). Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil. Computational and Structural Biotechnology, 20, 6543–6551.

[17]

Ayaz, M., Ali, Q., Jiang, Q., Wang, R., Wang, Z., Mu, G., Khan, S. A., Khan, A. R., Manghwar, H., Wu, H., Gao, X., & Gu, Q. (2022). Salt tolerant Bacillus strains improve plant growth traits and regulation of phytohormones in wheat under salinity stress. Plants, 11(20), 2769.

[18]

Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583–1594.

[19]

Diabankana, R. G. C., Afordoanyi, D. M., Safin, R. I., Nizamov, R. M., Karimova, L. Z., & Validov, S. Z. (2021). Antifungal properties, abiotic stress resistance, and biocontrol ability of Bacillus mojavensis PS17. Current Microbiology, 78(8), 3124–3132.

[20]

Ghazala, I., Chiab, N., Saidi, M. N., & Gargouri-Bouzid, R. (2023). The plant growth-promoting bacteria strain Bacillus mojavensis I4 enhanced salt stress tolerance in durum wheat. Current Microbiology, 80(5), 178.

[21]

Wang, D., Luo, W. Z., Zhang, D. D., Li, R., Kong, Z. Q., Song, J., Dai, X. F., Alkan, N., & Chen, J. Y. (2023). Insights into the biocontrol function of a Burkholderia gladioli strain against Botrytis cinerea. Microbiology Spectrum, 11(2), e0480522.

[22]

Tripathi, N., & Sapra, A. (2023). Gram staining. In StatPearls. Treasure Island. StatPearls Publishing.

[23]

Gao, T., Greenwich, J., Li, Y., Wang, Q., & Chai, Y. (2015). The bacterial tyrosine kinase activator TkmA contributes to biofilm formation largely independently of the cognate kinase PtkA in Bacillus subtilis. Journal of Bacteriology, 197(21), 3421–3432.

[24]

Glaeser, S. P., & Kämpfer, P. (2015). Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Systematic & Applied Microbiology, 38(4), 237–245.

[25]

Matsumura, Y. (2013). Multilocus sequence typing (MLST) analysis. Rinsho byori. The Japanese Journal of Clinical Pathology, 61(12), 1116–1122.

[26]

Agunwah, I. M., Ogueke, C. C., Nwosu, J. N., & Anyogu, A. (2024). Microbiological evaluation of the indigenous fermented condiment okpeye available at various retail markets in the south-eastern region of Nigeria. Heliyon, 10(3), e25493.

[27]

Chen, T., Zhang, Z., Li, W., Chen, J., Chen, X., Wang, B., Ma, J., Dai, Y., Ding, H., Wang, W., & Long, Y. (2022). Biocontrol potential of Bacillus subtilis CTXW 7-6-2 against kiwifruit soft rot pathogens revealed by whole-genome sequencing and biochemical characterization. Frontiers in Microbiology, 13, 1069109.

[28]

Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4(2), 127–136.

[29]

Chávez-Ramírez, B., Kerber-Díaz, J. C., Acoltzi-Conde, M. C., Ibarra, J. A., Vásquez-Murrieta, M. S., & Estrada-de Los Santos, P. (2020). Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi. Microbiological Research, 230, 126347.

[30]

Shan, Y., Wang, D., Zhao, F. H., Song, J., Zhu, H., Li, Y., Zhang, X. J., Dai, X. F., Han, D., & Chen, J. Y. (2024). Insights into the biocontrol and plant growth promotion functions of Bacillus altitudinis strain KRS010 against Verticillium dahliae. BMC Biology, 22(1), 116.

[31]

Song, J., Wang, D., Han, D., Zhang, D. D., Li, R., Kong, Z. Q., Dai, X. F., Subbarao, K. V., & Chen, J. Y. (2024). Characterization of the endophytic Bacillus subtilis KRS015 strain for its biocontrol efficacy against Verticillium dahliae. Phytopathology, 114(1), 61–72.

[32]

Santhanam, P., van Esse, H. P., Albert, I., Faino, L., Nürnberger, T., & Thomma, B. P. (2013). Evidence for functional diversification within a fungal NEP1-like protein family. Molecular plant-microbe interactions. Molecular Plant-Microbe Interactions, 26(3), 278–286.

[33]

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408.

[34]

Wei, H., He, W., Li, Z., Ge, L., Zhang, J., & Liu, T. (2022). Salt-tolerant endophytic bacterium Enterobacter ludwigii B30 enhance bermudagrass growth under salt stress by modulating plant physiology and changing rhizosphere and root bacterial community. Frontiers in Plant Science, 13, 959427.

[35]

Ciarmiello, L. F., Piccirillo, P., Pontecorvo, G., De Luca, A., Kafantaris, I., & Woodrow, P. (2011). A PCR based SNPs marker for specific characterization of English walnut (Juglans regia L.) cultivars. Molecular Biology Reports, 38(2), 1237–1249.

[36]

Zhang, X., Zhen, J. B., Li, H. H., Kang, M. M., Yang, Y. M., Kong, J., & Hua, J. P. (2011). Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). Plant Molecular Biology Reporter, 29(3), 626–637.

[37]

Xiong, L., Schumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought, and salt stress. The Plant Cell, 14(Suppl), S165–S183.

[38]

Chinnusamy, V., Zhu, J., & Zhu, J. K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. Genetic Engineering, 27, 141–177.

[39]

Huang, B., Jin, L., & Liu, J. Y. (2008). Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). Journal of Plant Physiology, 165(2), 214–223.

[40]

Tang, J., Zhang, S., Zhang, X., Chen, J., He, X., & Zhang, Q. (2020). Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal saline-alkali soil. Science of the Total Environment, 731, 138938.

[41]

Qi, H. Y., Wang, D., Han, D., Song, J., Ali, M., Dai, X. F., Zhang, X. J., & Chen, J. Y. (2023). Unlocking antagonistic potential of Bacillus amyloliquefaciens KRS005 to control gray mold. Frontiers in Microbiology, 14, 1189354.

[42]

Danish, M., Shahid, M., Zeyad, M. T., Bukhari, N. A., Al-Khattaf, F. S., Hatamleh, A. A., & Ali, S. (2022). Bacillus mojavensis, a metal-tolerant plant growth-promoting bacterium, improves growth, photosynthetic attributes, gas exchange parameters, and alkalo-polyphenol contents in silver nanoparticle (Ag-NP)-treated Withania somnifera L. (Ashwagandha). ACS Omega, 7(16), 13878–13893.

[43]

Xu, Y., Yang, L., Wang, H., Wei, X., Shi, Y., Liang, D., Cao, M., & He, N. (2022). Putative functions of EpsK in teichuronic acid synthesis and phosphate starvation in Bacillus licheniformis. Synthetic and Systems Biotechnology, 7(2), 815–823.

[44]

Huang, B., Jin, L., & Liu, J. Y. (2008). Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). Journal of Plant Physiology, 165(2), 214–223.

[45]

Kim, K., Jang, Y. J., Lee, S. M., Oh, B. T., Chae, J. C., & Lee, K. J. (2014). Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells, 37(2), 109–117.

[46]

Poria, V., Singh, S., Nain, L., Singh, B., & Saini, J. K. (2021). Rhizospheric microbial communities: Occurrence, distribution, and functions. In M. Nath, D. Bhatt, P. Bhargava, & D. K. Choudhary (Eds.), Microbial Metatranscriptomics Belowground (pp. 239–271). Springer.

[47]

Bhat, B. A., Tariq, L., Nissar, S., Islam, S. T., Islam, S. U., Mangral, Z., Ilyas, N., Sayyed, R. Z., Muthusamy, G., Kim, W., & Dar, T. U. H. (2022). The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. Journal of Applied Microbiology, 133(5), 2717–2741.

[48]

Xu, W., Yang, Q., Xie, X., Goodwin, P. H., Deng, X., Zhang, J., Sun, R., Wang, Q., Xia, M., Wu, C., & Yang, L. (2022). Genomic and phenotypic insights into the potential of Bacillus subtilis YB-15 isolated from rhizosphere to biocontrol against crown rot and promote growth of wheat. Biology, 11(5), 778.

[49]

Jha, B., Gontia, I., & Hartmann, A. (2012). The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth promoting potential. Plant and Soil, 356(1-2), 265–277.

[50]

Ali, S., Hameed, S., Shahid, M., Iqbal, M., Lazarovits, G., & Imran, A. (2020). Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research, 232, 126389.

[51]

Cam, S., Küçük, C., & Almaca, A. (2023). Bacillus strains exhibit various plant growth promoting traits and their biofilm-forming capability correlates to their salt stress alleviation effect on maize seedlings. Journal of Biotechnology, 369, 35c42-42.

[52]

Cam, S., Kücük, C., & Cevheri, C. (2022). The effect of salinity-resistant biofilm-forming Azotobacter spp. on salt tolerance in maize growth. Zemdirbyste-Agriculture, 109(4), 349–358.

[53]

Morcillo, R. J. L., & Manzanera, M. (2021). The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites, 11(6), 337.

[54]

Zheng, L., Gu, X., Sun, L., Dong, M., Gao, A., Han, Z., Pan, H., & Zhang, H. (2023). Adding metal ions to the Bacillus mojavensis D50 promotes biofilm formation and improves ability of biocontrol. Journal of Fungi, 9(5), 526.

[55]

Velmourougane, K., Prasanna, R., & Saxena, A. K. (2017). Agriculturally important microbial biofilms: Present status and future prospects. Journal of Basic Microbiology, 57(7), 548–573.

[56]

Mishra, S., Kumar, S., Saha, B., Awasthi, J., Dey, M., Panda, S., & Sahoo, L. (2016). Crosstalk between salt, drought, and cold stress in plants: Toward genetic engineering for stress tolerance. In N. Tuteja & S. S. Gill (Eds.), Abiotic Stress Response in Plants.

[57]

Javed, T., & Gao, S. J. (2023). WRKY transcription factors in plant defense. Trends in Genetics, 39(10), 787–801.

[58]

Shi, H., Xiong, L., Stevenson, B., Lu, T., & Zhu, J. K. (2002). The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. The Plant Cell, 14(3), 575–588.

RIGHTS & PERMISSIONS

2024 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

240

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/