Stage-specific transcriptome profiling highlights key modules associated with structurally conserved secreted proteins in Puccinia polysora infection of maize

Yuanwen Guo , Yuyan Liu , Jie Mei , Zeyu Jiao , Yan Yang , Wende Liu

New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e19

PDF
New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e19 DOI: 10.1002/npp2.19
ORIGINAL PAPER

Stage-specific transcriptome profiling highlights key modules associated with structurally conserved secreted proteins in Puccinia polysora infection of maize

Author information +
History +
PDF

Abstract

Southern corn rust (SCR), caused by the biotrophic fungal pathogen Puccinia polysora, is a globally significant disease that poses a severe threat to maize production, particularly in tropical and subtropical regions. Despite its economic importance, many aspects of the molecular interactions between P. polysora and maize remain poorly understood. In this study, we performed stage-specific transcriptome profiling to explore gene expression dynamics during key phases of P. polysora infection: conidia formation, spore germination, penetration, and colonization. We identified and characterized co-regulated modules of effector proteins that are critical for successful host infection. Utilizing AlphaFold3, we identified structurally conserved proteins co-expressed throughout the infection process. Notably, Cluster 7, a structurally conserved protein group, exhibited uniquely peak expression during the penetration stage, suggesting a pivotal role in overcoming host defenses. This research offers new insights into the molecular processes involved in P. polysora infection and provides a valuable resource for developing novel strategies to mitigate the global impact of SCR.

Keywords

Puccinia polysora / stage-specific / structural similarity / transcriptome

Cite this article

Download citation ▾
Yuanwen Guo, Yuyan Liu, Jie Mei, Zeyu Jiao, Yan Yang, Wende Liu. Stage-specific transcriptome profiling highlights key modules associated with structurally conserved secreted proteins in Puccinia polysora infection of maize. New Plant Protection, 2024, 1(2): e19 DOI:10.1002/npp2.19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Underwood, L. M. (1897). Some new fungi, chiefly from Alabama. Bulletin of the Torrey Botanical Club, 24(2), 81–86.

[2]

Orian, G. (1954). Occurrence of Puccinia polysora underwood in the Indian ocean aare. Nature, 173(4402), 505.

[3]

Duan, D. R., & He, H. Z. (1984). Description of a rust Puccinia polysora on corn in hainan island. Acta Mycologica Sinica, 3(2), 125–126. https://doi.org/10.13346/j.mycosystema.1984.02.011

[4]

Hirayae, K., Kawase, A., Umeda, Y., Nakatani, D., Yamaguchi, T., & Nishi, K. (1998). Genetic variation of southern rust fungus of corn in Japan. Kyushu Plant Protection Research, 44, 12–14.

[5]

Rhind, D., Waterston, J., & Deighton, F. C. (1952). Occurrence of Puccinia polysora underw. in West Africa. Nature, 169(4302), 631.

[6]

Reyes, G. M. (1954). An epidemic outbreak of the maize rust in eastern and central Visayas, Philippines. Philippine Journal of Agriculture, 18, 115–127. https://www.cabidigitallibrary.org/doi/full/10.5555/19551601053

[7]

Futrell, M. C., Hooker, A. L., & Gene, S. E. (1975). Resistance in maize to corn rust, controlled by a single dominant gene 1. Crop Science, 15(4), 597–599.

[8]

Leonard, K. J., & Szabo, L. J. (2005). Stem rust of small grains and grasses caused by Puccinia graminis. Molecular Plant Pathology, 6(2), 99–111.

[9]

Bolton, M. D., Kolmer, J. A., & Garvin, D. F. (2008). Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 9(5), 563–575.

[10]

Sun, Q., Li, L., Guo, F., Zhang, K., Dong, J., Luo, Y., & Ma, Z. (2021). Southern corn rust caused by Puccinia polysora underw: A review. Phytopathology Research, 3(1), 25.

[11]

Yan, X., Tang, B., Ryder, L. S., MacLean, D., Were, V. M., Eseola, A. B., Cruz-Mireles, N., Ma, W., Foster, A. J., Osés-Ruiz, M., & Talbot, N. J. (2023). The transcriptional landscape of plant infection by the rice blast fungus Magnaporthe oryzae reveals distinct families of temporally co-regulated and structurally conserved effectors. The Plant Cell, 35(5), 1360–1385.

[12]

Ouyang, H., Sun, G., Li, K., Wang, R., Lv, X., Zhang, Z., Zhao, R., Wang, Y., Shu, H., Jiang, H., Zhang, S., Wu, J., Zhang, Q., Chen, X., Liu, T., Ye, W., Wang, Y., & Wang, Y. (2024). Profiling of Phakopsora pachyrhizi transcriptome revealed co-expressed virulence effectors as prospective RNA interference targets for soybean rust management. Journal of Integrative Plant Biology. Advance online publication.

[13]

Coram, T. E., Wang, M., & Chen, X. (2008). Transcriptome analysis of the wheat-Puccinia striiformis f. sp. tritici interaction. Molecular Plant Pathology, 9(2), 157–169.

[14]

Krępski, T., Piasecka, A., Święcicka, M., Kańczurzewska, M., Sawikowska, A., Dmochowska-Boguta, M., Rakoczy-Trojanowska, M., & Matuszkiewicz, M. (2024). Leaf rust (Puccinia recondita f. sp. secalis) triggers substantial changes in rye (Secale cereale L.) at the transcriptome and metabolome levels. BMC Plant Biology, 24(1), 107.

[15]

Dorostkar, S., Dadkhodaie, A., Ebrahimie, E., Heidari, B., & Ahmadi-Kordshooli, M. (2022). Comparative transcriptome analysis of two contrasting resistant and susceptible Aegilops tauschii accessions to wheat leaf rust (Puccinia triticina) using RNA-sequencing. Scientific Reports, 12(1), 821.

[16]

Sharma Poudel, R., Richards, J., Shrestha, S., Solanki, S., & Brueggeman, R. (2019). Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance. BMC Genomics, 20(1), 985.

[17]

Liang, J., Li, Y., Dodds, P. N., Figueroa, M., Sperschneider, J., Han, S., Tsui, C. K. M., Zhang, K., Li, L., Ma, Z., & Cai, L. (2023). Haplotype-phased and chromosome-level genome assembly of Puccinia polysora, a giga-scale fungal pathogen causing southern corn rust. Molecular Ecology Resources, 23(3), 601–620.

[18]

Le Naour-Vernet, M., Charriat, F., Gracy, J., Cros-Arteil, S., Ravel, S., Veillet, F., Meusnier, I., Padilla, A., Kroj, T., Cesari, S., & Gladieux, P. (2023). Adaptive evolution in virulence effectors of the rice blast fungus Pyricularia oryzae. PLoS Pathogens, 19(9), e1011294.

[19]

Guo, L., Cesari, S., de Guillen, K., Chalvon, V., Mammri, L., Ma, M., Meusnier, I., Bonnot, F., Padilla, A., Peng, Y. L., Liu, J., & Kroj, T. (2018). Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proceedings of the National Academy of Sciences of the United States of America, 115(45), 11637–11642.

[20]

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.

[21]

Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

[22]

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120.

[23]

Kim, D., Langmead, B., & Salzberg, S. L. (2015). Hisat: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357–360.

[24]

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.

[25]

Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930.

[26]

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

[27]

Langfelder, P., & Horvath, S. (2008). Wgcna: an R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559.

[28]

Carlson, M., & Pagès, H. (2019). AnnotationForge: Tools for building SQLite-based annotation data packages. R Package Version, 1(0). https://bioconductor.org/packages/AnnotationForge

[29]

Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287.

[30]

Zhang, Y., & Skolnick, J. (2005). TM-Align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309.

[31]

Enright, A. J., Van Dongen, S., & Ouzounis, C. A. (2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research, 30(7), 1575–1584.

[32]

Joseph-Strauss, D., Zenvirth, D., Simchen, G., & Barkai, N. (2007). Spore germination in Saccharomyces cerevisiae: Global gene expression patterns and cell cycle landmarks. Genome Biology, 8(11), R241.

[33]

Herman, P. K., & Rine, J. (1997). Yeast spore germination: A requirement for ras protein activity during re-entry into the cell cycle. The EMBO Journal, 16(20), 6171–6181.

[34]

Martinez-D’Alto, A., Yan, X., Detomasi, T. C., Sayler, R. I., Thomas, W. C., Talbot, N. J., & Marletta, M. A. (2023). Characterization of a unique polysaccharide monooxygenase from the plant pathogen Magnaporthe oryzae. Proceedings of the National Academy of Sciences of the United States of America, 120(8), e2215426120.

[35]

Barata-Antunes, C., Alves, R., Talaia, G., Casal, M., Gerós, H., Mans, R., & Paiva, S. (2021). Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Computational and Structural Biotechnology Journal, 19, 1713–1737.

[36]

Deng, C., Leonard, A., Cahill, J., Lv, M., Li, Y., Thatcher, S., Li, X., Zhao, X., Du, W., Li, Z., Li, H., Llaca, V., Fengler, K., Marshall, L., Harris, C., Tabor, G., Li, Z., Tian, Z., Yang, Q., … Ding, J. (2022). The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Molecular Plant, 15(5), 904–912.

[37]

Mapuranga, J., Zhang, L., Zhang, N., & Yang, W. (2022). The haustorium: The root of biotrophic fungal pathogens. Frontiers in Plant Science, 13, 963705.

[38]

Ryder, L. S., Cruz-Mireles, N., Molinari, C., Eisermann, I., Eseola, A. B., & Talbot, N. J. (2022). The appressorium at a glance. Journal of Cell Science, 135(14), jcs259857.

[39]

Shi, T. T., Li, G. H., & Zhao, P. J. (2023). Appressoria-small but incredibly powerful structures in plant-pathogen interactions. International Journal of Molecular Sciences, 24(3), 2141.

[40]

Prusky, D. B., & Sionov, E. (2021). Special Issue " Interplay between fungal pathogens and harvested crops and fruits. Microorganisms, 9(3), 553.

[41]

Lorrain, C., Gonçalves Dos Santos, K. C., Germain, H., Hecker, A., & Duplessis, S. (2019). Advances in understanding obligate biotrophy in rust fungi. New Phytologist, 222(3), 1190–1206.

[42]

Ye, W., Munemasa, S., Shinya, T., Wu, W., Ma, T., Lu, J., Kinoshita, T., Kaku, H., Shibuya, N., & Murata, Y. (2020). Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20932–20942.

[43]

Fukada, F., & Kubo, Y. (2015). Colletotrichum orbiculare regulates cell cycle G1/S progression via a two-component GAP and a GTPase to establish plant infection. The Plant Cell, 27(9), 2530–2544.

[44]

Nesher, I., Barhoom, S., & Sharon, A. (2008). Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. BMC Biology, 6(1), 9.

[45]

Situ, J., Xi, P., Lin, L., Huang, W., Song, Y., Jiang, Z., & Kong, G. (2022). Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Frontiers in Microbiology, 13, 984672.

[46]

Shao, W., Wang, J., Zhang, Y., Zhang, C., Chen, J., Chen, Y., Fei, Z., Ma, Z., Sun, X., & Jiao, C. (2024). The jet-like chromatin structure defines active secondary metabolism in fungi. Nucleic Acids Research, 52(9), 4906–4921.

[47]

Liu, J., Chen, M., Gu, S., Fan, R., Zhao, Z., Sun, W., Yao, Y., Li, J., & Tian, C. (2024). Independent metabolism of oligosaccharides is the keystone of synchronous utilization of cellulose and hemicellulose in Myceliophthora. PNAS Nexus, 3(2), 1–14.

[48]

Suganuma, T., & Workman, J. L. (2023). Chromatin balances cell redox and energy homeostasis. Epigenetics and Chromatin, 16(1), 46.

[49]

Mo, C., Xie, C., Wang, G., Tian, T., Liu, J., Zhu, C., Xiao, X., & Xiao, Y. (2021). Cyclophilin acts as a ribosome biogenesis factor by chaperoning the ribosomal protein (PlRPS15) in filamentous fungi. Nucleic Acids Research, 49(21), 12358–12376.

[50]

Deryabin, A., Moraleva, A., Dobrochaeva, K., Kovaleva, D., Rubtsova, M., Dontsova, O., & Rubtsov, Y. (2024). Human RPF1 and ESF1 in pre-rRNA processing and the assembly of pre-ribosomal particles: A functional study. Cells, 13(4), 326.

[51]

Zakrzewska-Placzek, M., Golisz-Mocydlarz, A., Krzyszton, M., Piotrowska, J., Lichocka, M., & Kufel, J. (2023). The nucleolar protein NOL12 is required for processing of large ribosomal subunit rRNA precursors in Arabidopsis. BMC Plant Biology, 23(1), 538.

[52]

Garcia-Rubio, R., de Oliveira, H. C., Rivera, J., & Trevijano-Contador, N. (2020). The fungal cell wall: Candida, cryptococcus, and Aspergillus species. Frontiers in Microbiology, 10, 2993.

[53]

Probst, C., Hallas-Møller, M., Ipsen, J. Ø., Brooks, J. T., Andersen, K., Haon, M., Berrin, J. G., Martens, H. J., Nichols, C. B., Johansen, K. S., & Alspaugh, J. A. (2023). A fungal lytic polysaccharide monooxygenase is required for cell wall integrity, thermotolerance, and virulence of the fungal human pathogen Cryptococcus neoformans. PLoS Pathogens, 19(4), e1010946.

[54]

Zhao, Z., Liu, H., Wang, C., & Xu, J. R. (2014). Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 15(1), 6.

[55]

Rodrigues, M. L., Nimrichter, L., Cordero, R. J., & Casadevall, A. (2011). Fungal polysaccharides: Biological activity beyond the usual structural properties. Frontiers in Microbiology, 2, 171.

[56]

Douglas, C. M. (2001). Fungal beta (1,3)-D-glucan synthesis. Medical Mycology, 39(Suppl 1), 55–66.

[57]

Papaspyridi, L. M., Zerva, A., & Topakas, E. (2018). Biocatalytic synthesis of fungal β-glucans. Catalysts, 8(7), 274.

[58]

Rocklin, G. J., Chidyausiku, T. M., Goreshnik, I., Ford, A., Houliston, S., Lemak, A., Carter, L., Ravichandran, R., Mulligan, V. K., Chevalier, A., Arrowsmith, C. H., & Baker, D. (2017). Global analysis of protein folding using massively parallel design, synthesis, and testing. Science (New York, N.Y.), 357(6347), 168–175.

[59]

Keeton, A. B., Salter, E. A., & Piazza, G. A. (2017). The RAS-effector interaction as a drug target. Cancer Research, 77(2), 221–226.

[60]

Arroyo-Velez, N., González-Fuente, M., Peeters, N., Lauber, E., & Noël, L. D. (2020). From effectors to effectomes: Are functional studies of individual effectors enough to decipher plant pathogen infectious strategies? PLoS Pathogens, 16(12), e1009059.

[61]

Embry, A., Baggett, N. S., Heisler, D. B., White, A., de Jong, M. F., Kocsis, B. L., Tomchick, D. R., Alto, N. M., & Gammon, D. B. (2024). Exploiting bacterial effector proteins to uncover evolutionarily conserved antiviral host machinery. PLoS Pathogens, 20(5), e1012010.

RIGHTS & PERMISSIONS

2024 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/