Farnesol inhibits growth and development of Ustilaginoidea virens

Mina Yu , Junjie Yu , Xiayan Pan , Huijuan Cao , Tianqiao Song , Yongfeng Liu

New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e17

PDF
New Plant Protection ›› 2024, Vol. 1 ›› Issue (2) : e17 DOI: 10.1002/npp2.17
ORIGINAL PAPER

Farnesol inhibits growth and development of Ustilaginoidea virens

Author information +
History +
PDF

Abstract

Rice false smut disease, caused by the pathogen Ustilaginoidea virens, specifically infects rice panicles. This disease leads to significant quantitative and qualitative losses in the rice industry. Farnesol, a naturally occurring terpene produced by plants, exhibits diverse toxic potentials against various fungi. Here, we investigate the in vitro inhibitory effects of farnesol on U. virens isolates. The results indicate that farnesol could retard conidial germination at a concentration of 20 µM and inhibit germination at concentrations exceeding 40 µM. Additionally, farnesol demonstrates inhibitory activity on the mycelial growth and adhesion of U. virens in a dose-dependent manner. RNA-seq data show that farnesol treatment results in the misregulation of a subset of genes involved in oxidoreductase activity, membrane components, molecular function, and transcription factor activity. Furthermore, farnesol induces a significant accumulation of reactive oxygen species, including superoxide anions, which may subsequently trigger cell death. Notably, farnesol also induces the expression of genes encoding GTPase activity of UvRas1 and UvRas2, leading to the expression of genes encoding adenylate cyclase, which promotes the synthesis of intracellular cAMP, and activates genes involved in MAPK pathway. Collectively, this study proposes a mechanism by which farnesol affects the growth and development of U. virens.

Keywords

cAMP / conidial germination / mycelial growth / reactive oxygen species / rice false smut disease

Cite this article

Download citation ▾
Mina Yu, Junjie Yu, Xiayan Pan, Huijuan Cao, Tianqiao Song, Yongfeng Liu. Farnesol inhibits growth and development of Ustilaginoidea virens. New Plant Protection, 2024, 1(2): e17 DOI:10.1002/npp2.17

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang, Y. X., Jin, J., Hu, D. W., Yong, M. L., Xu, Y., & He, L. (2013). Elucidation of the infection process of Ustilaginoidea virens (teleomorph: Villosiclava virens) in rice spikelets. Plant Pathology, 62(1), 1–8.

[2]

Fu, R., Ding, L., Zhu, J., Li, P., & Zheng, A. P. (2012). Morphological structure of propagules and electrophoretic karyotype analysis of false smut Villosiclava virens in rice. Journal of Microbiology (Seoul, Korea), 50(2), 263–269.

[3]

Li, Y., Wang, M., Liu, Z., Zhang, K., Cui, F., & Sun, W. (2019). Towards understanding the biosynthetic pathway for ustilaginoidin mycotoxins in Ustilaginoidea virens. Environmental Microbiology, 21(8), 2629–2643.

[4]

Sun, W., Fan, J., Fang, A., Li, Y., Tariqjaveed, M., Li, D., Hu, D., & Wang, W. M. (2020). Ustilaginoidea virens: Insights into an emerging rice pathogen. Annual Review of Phytopathology, 58(1), 363–385.

[5]

Fan, J., Yang, J., Wang, Y. Q., Li, G. B., Li, Y., Huang, F., & Wang, W. M. (2016). Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. Molecular Plant Pathology, 17(9), 1321–1330.

[6]

Zheng, J., Liu, T., Guo, Z., Zhang, L., Mao, L., Zhang, Y., & Jiang, H. (2019). Fumigation and contact activities of 18 plant essential oils on Villosiclava virens, the pathogenic fungus of rice false smut. Scientific Reports, 9(1), 7330.

[7]

Chen, Y., Zhang, Y., Yao, J., Li, Y. F., Yang, X., Wang, W. X., Zhang, A. F., & Gao, T. C. (2013). Frequency distribution of sensitivity of Ustilaginoidea virens to four EBI fungicides, prochloraz, difenoconazole, propiconazole and tebuconazole, and their efficacy in controlling rice false smut in Anhui province of China. Phytoparasitica, 41(3), 277–284.

[8]

Song, J., Wang, Z., Wang, Y., Zhang, S., Lei, T., Liang, Y., Dai, Q., Huo, Z., Xu, K., & Chen, S. (2022). Prevalence of carbendazin resistance in field populations of the rice false smut pathogen Ustilaginoidea virens from Jiangsu, China, molecular mechanisms, and fitness stability. Journal of Fungi (Basel, Switzerland), 8(12), 1311.

[9]

Zhou, Y. X., Li, H. H., Yu, J. J., Yu, M. N., Song, T. Q., Du, Y., Qi, Z. Q., Zhang, R. S., Yin, X. L., & Liu, Y. F. (2017). First report of propiconazole resistance in field isolates of Ustilaginoidea virens on rice in Jiangsu Province of east China. Plant Disease, 101(5), 840.

[10]

Fang, A., Zhang, R., Qiao, W., Peng, T., Qin, Y., Wang, J., Tian, B., Yu, Y., Sun, W., Yang, Y., & Bi, C. (2023). Sensitivity baselines, resistance monitoring, and molecular mechanisms of the rice false smut pathogen Ustilaginoidea virens to prochloraz and azoxystrobin in four regions of southern China. Journal of Fungi (Basel, Switzerland), 9(8), 832.

[11]

Boone, C. H. T., Parker, K. A., Gutzmann, D. J., Atkin, A. L., & Nickerson, K. W. (2023). Farnesol as an antifungal agent: Comparisons among MTLa and MTLα haploid and diploid Candida albicans and Saccharomyces cerevisiae. Frontiers in Physiology, 14, 1207567.

[12]

Semighini, C. P., Hornby, J. M., Dumitru, R., Nickerson, K. W., & Harris, S. D. (2006). Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Molecular Microbiology, 59(3), 753–764.

[13]

Cao, Y. Y., Cao, Y. B., Xu, Z., Ying, K., Li, Y., Xie, Y., Zhu, Z. Y., Chen, W. S., & Jiang, Y. Y. (2005). cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrobial Agents and Chemotherapy, 49(2), 584–589.

[14]

Monteiro, D. R., Arias, L. S., Fernandes, R. A., da Silva, L. F. D., De Castilho, M. O. V. F., da, R., Alberto, C. B., Straioto, F., Barbosa, D., & Delbem, A. (2017). Antifungal activity of tyrosol and farnesol used in combination against Candida species in the planktonic state or forming biofilms. Journal of Applied Microbiology, 123(2), 392–400.

[15]

Chen, S., Xia, J., Li, C., Zuo, L., & Wei, X. (2018). The possible molecular mechanisms of farnesol on the antifungal resistance of C. albicans biofilms: The regulation of CYR1 and PDE2. BMC Microbiology, 18(1), 203.

[16]

Padder, S. A., Prasad, R., & Shah, A. H. (2018). Quorum sensing: A less known mode of communication among fungi. Microbiological Research, 210, 51–58.

[17]

Nagy, F., Tóth, Z., Daróczi, L., Székely, A., Borman, A. M., Majoros, L., & Kovács, R. (2020). Farnesol increases the activity of echinocandins against Candida auris biofilms. Medical Mycology, 58(3), 404–407.

[18]

Sebaa, S., Boucherit-Otmani, Z., & Courtois, P. (2019). Effects of tyrosol and farnesol on Candida albicans biofilm. Molecular Medicine Reports, 19(4), 3201–3209.

[19]

Cotoras, M., Castro, P., Vivanco, H., Melo, R., & Mendoza, L. (2013). Farnesol induces apoptosis-like phenotype in the phytopathogenic fungus Botrytis cinerea. Mycologia, 105(1), 28–33.

[20]

Semighini, C. P., Murray, N., & Harris, S. D. (2008). Inhibition of Fusarium graminearum growth and development by farnesol. FEMS Microbiology Letters, 279(2), 259–264.

[21]

Nassimi, Z., Taheri, P., & Tarighi, S. (2019). Farnesol altered morphogenesis and induced oxidative burst-related responses in Rhizoctonia solani AG1-IA. Mycologia, 111(3), 359–370.

[22]

Yu, M., Yu, J., Hu, J., Huang, L., Wang, Y., Yin, X., Nie, Y., Meng, X., Wang, W., & Liu, Y. (2015). Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Fungal Genetics and Biology, 76, 10–19.

[23]

Soylu, E. M., Soylu, S., & Kurt, S. (2006). Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia, 161(2), 119–128.

[24]

Kischkel, B., Souza, G. K., Chiavelli, L. U. R., Pomini, A. M., Svidzinski, T. I. E., & Negri, M. (2020). The ability of farnesol to prevent adhesion and disrupt Fusarium keratoplasticum biofilm. Applied Microbiology and Biotechnology, 104(1), 377–389.

[25]

Gravelat, F. N., Ejzykowicz, D. E., Chiang, L. Y., Chabot, J. C., Urb, M., Macdonald, K. D., al-Bader, N., Filler, S. G., & Sheppard, D. C. (2010). Aspergillus fumigatus MedA governs adherence, host cell interactions and virulence. Cellular Microbiology, 12(4), 473–488.

[26]

Dou, X., Wang, Q., Qi, Z., Song, W., Wang, W., Guo, M., Zhang, H., Zhang, Z., Wang, P., & Zheng, X. (2011). MoVam7, a conserved SNARE involved in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis of Magnaporthe oryzae. PLoS One, 6(1), e16439.

[27]

Cao, H., Gong, H., Yu, M., Pan, X., Song, T., Yu, J., Qi, Z., Du, Y., Zhang, R., & Liu, Y. (2024). The Ras GTPase-activating protein UvGap1 orchestrates conidiogenesis and pathogenesis in the rice false smut fungus Ustilaginoidea virens. Molecular Plant Pathology, 25(3), e13448.

[28]

Yu, M., Yu, J., Cao, H., Song, T., Pan, X., Qi, Z., Du, Y., Zhang, R., Huang, S., Liu, W., & Liu, Y. (2021). SUN-Family protein UvSUN1 regulates the development and virulence of Ustilaginoidea virens. Frontiers in Microbiology, 12, 739453.

[29]

Nickerson, K. W., Gutzmann, D. J., Boone, C. H. T., Pathirana, R. U., & Atkin, A. L. (2024). Physiological adventures in Candida albicans: Farnesol and ubiquinones. Microbiology and Molecular Biology Reviews, 88(1), e00081-22.

[30]

Cao, H. J., Zhang, J. J., Yong, M. L., Yu, M. N., Liu, Y. F., Yu, J. J., & Pan, X. Y. (2021). The cyclase-associated protein UvCap1 is required for mycelial growth and pathogenicity in the rice false smut fungus. Phytopathology Research, 3(1), 5.

[31]

Guo, W., Gao, Y., Yu, Z., Xiao, Y., Zhang, Z., & Zhang, H. (2019). The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens. Fungal Genetics and Biology, 129, 65–73.

[32]

Xu, J. R., Urban, M., Sweigard, J. A., & Hamer, J. E. (1997). The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Molecular Plant-Microbe Interactions, 10(2), 187–194.

[33]

Tang, J., Bai, J., Chen, X., Zheng, L., Liu, H., & Huang, J. (2020). Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus Ustilaginoidea virens. Current Genetics, 66(2), 409–420.

[34]

Zheng, D., Wang, Y., Han, Y., Xu, J. R., & Wang, C. (2016). UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Scientific Reports, 6(1), 24824.

[35]

Nikoomanesh, F., Roudbarmohammadi, S., Khoobi, M., Haghighi, F., & Roudbary, M. (2019). Design and synthesis of mucoadhesive nanogel containing farnesol: Investigation of the effect on HWP1, SAP6 and Rim101 genes expression of Candida albicans in vitro. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 64–72.

[36]

Enjalbert, B., & Whiteway, M. (2005). Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryotic Cell, 4(7), 1203–1210.

[37]

Langford, M. L., Atkin, A. L., & Nickerson K, W. (2009). Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiology, 4(10), 1353–1362.

[38]

Fernandes, R. A., Monteiro, D. R., Arias, L. S., Fernandes, G. L., Delbem, A. C. B., & Barbosa, D. B. (2018). Virulence factors in Candida albicans and Streptococcus mutans biofilms mediated by farnesol. Indian Journal of Microbiology, 58(2), 138–145.

[39]

Ramage, G., Saville, S. P., Wickes, B. L., Lo, L., & Icrobiol, A. P. P. L. E. N. M. (2002). Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Applied Environment Microbiology, 68(11), 5459–5463.

[40]

Mayo-Prieto, S., Izquierdo, H., González, O., Rodríguez-González, A., Lorenzana, A., Gutiérrez, S., & Casquero, P. A. (2016). Effect of farnesol, a compound produced by Trichoderma when growing on bean (Phaseolus vulgaris L.). Planta Medical, 81(S 01), S1–S381. S1–S381.

[41]

Cardoza, R. E., McCormick, S. P., Lindo, L., Mayo-Prieto, S., González-Cazón, D., Martínez-Reyes, N., Carro-Huerga, G., Rodríguez-González, Á., Proctor, R. H., Casquero, P. A., & Gutiérrez, S. (2022). Effect of farnesol in Trichoderma Physiology and in fungal-plant interaction. Journal of Fungi (Basel, Switzerland), 8(12), 1266.

RIGHTS & PERMISSIONS

2024 The Author(s). New Plant Protection published by John Wiley & Sons Australia, Ltd on behalf of Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

241

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/