Release brake and set plant defense in motion

Huan Wang , Ruize Zhang , Ziming Zhang , Daowen Wang , Zheng QingFu

New Plant Protection ›› 2024, Vol. 1 ›› Issue (1) : 11

PDF
New Plant Protection ›› 2024, Vol. 1 ›› Issue (1) :11 DOI: 10.1002/npp2.11
COMMENTARY

Release brake and set plant defense in motion

Author information +
History +
PDF

Keywords

chitin / OsCERK1 / poly-ubiquitination / PTI

Cite this article

Download citation ▾
Huan Wang, Ruize Zhang, Ziming Zhang, Daowen Wang, Zheng QingFu. Release brake and set plant defense in motion. New Plant Protection, 2024, 1(1): 11 DOI:10.1002/npp2.11

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jones J. D. G., & Dangl J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. https://doi.org/10.1038/nature05286

[2]

Boller T., & Felix G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60(1), 379-406. https://doi.org/10.1146/annurev.arplant.57.032905.105346

[3]

Wu L., Chen H., Curtis C., & Fu Z. Q. (2014). Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. Virulence, 5(7), 710-721 [corrected]. https://doi.org/10.4161/viru.29755

[4]

Fu Z. Q., & Dong X. (2013). Systemic acquired resistance: Turning local infection into global defense. Annual Review of Plant Biology, 64(1), 839-863. https://doi.org/10.1146/annurev-arplant-042811-105606

[5]

Huot B., Yao J., Montgomery B. L., & He S. Y. (2014). Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Molecular Plant, 7(8), 1267-1287. https://doi.org/10.1093/mp/ssu049

[6]

Wang G., Chen X., Yu C., Shi X., Lan W., Gao C., Yang J., Dai H., Zhang X., Zhang H., Zhao B., Xie Q., Yu N., He Z., Zhang Y., & Wang E. (2024). Release of a ubiquitin brake activates OsCERK1-triggered immunity in rice. Nature, 629(8014), 1158-1164. https://doi.org/10.1038/s41586-024-07418-9

[7]

Akamatsu A., Wong H. L., Fujiwara M., Okuda J., Nishide K., Uno K., Imai K., Umemura K., Kawasaki T., Kawano Y., & Shimamoto K. (2013). An OsCEBiP/OsCERK1-OsRacGEF1- OsRac1 module is an essential early component of chitin- induced rice immunity. Cell Host & Microbe, 13(4), 465-476. https://doi.org/10.1016/j.chom.2013.03.007

[8]

Wang C., Wang G., Zhang C., Zhu P., Dai H., Yu N., He Z., Xu L., & Wang E. (2017). OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Molecular Plant, 10(4), 619-633. https://doi.org/10.1016/j.molp.2017.01.006

[9]

Miya A., Albert P., Shinya T., Desaki Y., Ichimura K., Shirasu K., Narusaka Y., Kawakami N., Kaku H., & Shibuya N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19613-19618. https://doi.org/10.1073/pnas.0705147104

[10]

Wan J., Zhang X. C., Neece D., Ramonell K. M., Clough S., Kim S. Y., Stacey M. G., & Stacey G. (2008). A LysM receptor- like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. The Plant Cell, 20(2), 471-481. https://doi.org/10.1105/tpc.107.056754

[11]

Lu D., Lin W., Gao X., Wu S., Cheng C., Avila J., Heese A., Devarenne T. P., He P., & Shan L. (2011). Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 332(6036), 1439-1442. https://doi.org/10.1126/science.1204903

[12]

Chen Y., Ren W., Wang Q., He Y., Ma D., & Cai Z. (2022). The regulation of necroptosis by ubiquitylation. Apoptosis, 27(9- 10), 668-684. https://doi.org/10.1007/s10495-022-01755-8

Funding

National Science Foundation(IOS-2207677)

AI Summary AI Mindmap
PDF

1284

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/