Study on the printing stability of Invar 36 alloy under different process parameter conditions in gas metal arc additive manufacturing

Giulio Mattera , Elena Manoli , Luigi Nele

Materials Science in Additive Manufacturing ›› 2025, Vol. 4 ›› Issue (4) : 025220046

PDF (1696KB)
Materials Science in Additive Manufacturing ›› 2025, Vol. 4 ›› Issue (4) :025220046 DOI: 10.36922/MSAM025220046
ORIGINAL RESEARCH ARTICLE
research-article

Study on the printing stability of Invar 36 alloy under different process parameter conditions in gas metal arc additive manufacturing

Author information +
History +
PDF (1696KB)

Abstract

Invar 36, a nickel–iron alloy distinguished by its low coefficient of thermal expansion, is a material of significant interest for high-precision applications in aerospace, moulds used in composite material fabrication processes and metrology. This work investigates the stability of depositing Invar 36 through gas metal arc additive manufacturing (GMA-AM), also known as wire arc additive manufacturing, with a focus on identifying process conditions, in a standard gas metal arc welding (GMAW) process, that promote consistent and defect-minimised builds. A series of experiments was conducted to assess the effects of key process parameters – including wire feed speed, welding speed and arc voltage – on deposition stability. Stability was evaluated through geometrical consistency of the deposited walls, arc behaviour and visual inspection of process-induced anomalies such as spatter and lack of fusion. This study presents a novel methodology to quantitatively assess the stability of the GMA-AM process, along with the construction of a process map specifically tailored for the Invar 36 alloy. The insights gained contribute to advancing the understanding of wire-based additive manufacturing of Invar 36, which is still understudied, and provide a foundation for further investigations into its mechanical performance and microstructural evolution under optimised process parameter conditions.

Keywords

Invar 36 / Gas metal arc additive manufacturing / Process stability / Wire arc additive manufacturing / Deposition quality / Process parameters

Cite this article

Download citation ▾
Giulio Mattera, Elena Manoli, Luigi Nele. Study on the printing stability of Invar 36 alloy under different process parameter conditions in gas metal arc additive manufacturing. Materials Science in Additive Manufacturing, 2025, 4(4): 025220046 DOI:10.36922/MSAM025220046

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

Not applicable

Conflict of Interest

Dr. Giulio Mattera serves as the Editorial Board Member of the journal but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare that they have no competing interests.

References

[1]

Kul M, Akgul B, Karabay YZ. The relationship of hot and cold rolling processes with the structure and properties of invar 36. Mater Chem Phys. 2023;295:127215. doi: 10.1016/j.matchemphys.2022.127215

[2]

Smith RJ, Lewi GJ, Yates DH. Development and application of nickel alloys in aerospace engineering. Aircr Eng Aerosp Technol. 2001;73(2):138-147. doi: 10.1108/00022660110694995

[3]

Khanna N, Gandhi A, Nakum B, Srivastava A. Optimization and analysis of surface roughness for INVAR-36 in end milling operations. Mater Today Proc. 2018;5(2):5281-5288. doi: 10.1016/j.matpr.2017.12.111

[4]

Kaladhar M, Subbaiah KV, Rao CHS. Machining of austenitic stainless steels - a review. Int J Mach Mach Mater. 2012;12(1/2):178. doi: 10.1504/IJMMM.2012.048564

[5]

Huang G, He G, Gong X, He Y, Liu Y, Huang K. Additive manufacturing of invar 36 alloy. J Mater Res Technol. 2024;30:1241-1268. doi: 10.1016/j.jmrt.2024.02.221

[6]

Ding D, Pan Z, Cuiuri D, Li H. Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81(1-4):465-481. doi: 10.1007/s00170-015-7077-3

[7]

Pan Z, Ding D, Wu B, Cuiuri D, Li H, Norrish J. Arc welding processes for additive manufacturing: A review. In: Transactions on Intelligent Welding Manufacturing. Vol 1. Germany: Springer Nature; 2018. p. 3-24.

[8]

Norrish J, Polden J, Richardson I. A review of wire arc additive manufacturing: Development, principles, process physics, implementation and current status. J Phys D Appl Phys. 2021;54(47):473001. doi: 10.1088/1361-6463/ac1e4a

[9]

Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P. Wire + arc additive manufacturing. Mater Sci Technol. 2016;32(7):641-647. doi: 10.1179/1743284715Y.0000000073

[10]

Kerber E, Knitt H, Fahrendholz-Heiermann JL, et al. Variable layer heights in wire arc additive manufacturing and WAAM information models. Machines. 2024;12(7):432. doi: 10.3390/machines12070432

[11]

Schmitz M, Wiartalla J, Gelfgren M, Mann S, Corves B, Hüsing M. A robot-centered path-planning algorithm for multidirectional additive manufacturing for WAAM processes and pure object manipulation. Appl Sci. 2021;11(13):5759. doi: 10.3390/app11135759

[12]

Yuan L, Pan Z, Ding D, et al. Investigation of humping phenomenon for the multi-directional robotic wire and arc additive manufacturing. Robot Comput Integr Manuf. 2020;63:101916. doi: 10.1016/j.rcim.2019.101916

[13]

Ribeiro F, Norrish J. (1997, July). Making components with controlled metal deposition. In ISIE’97: Proceedings of the IEEE International Symposium on Industrial Electronics (pp. 831–835). IEEE.

[14]

Lin Z, Song K, Yu X. A review on wire and arc additive manufacturing of titanium alloy. J Manuf Process. 2021;70:24-45. doi: 10.1016/j.jmapro.2021.08.018

[15]

Jin W, Zhang C, Jin S, Tian Y, Wellmann D, Liu W. Wire arc additive manufacturing of stainless steels: A review. Appl Sci. 2020;10(5):1563. doi: 10.3390/app10051563

[16]

Bhuvanesh Kumar M, Sathiya P, Senthil SM. A critical review of wire arc additive manufacturing of nickel-based alloys: Principles, process parameters, microstructure, mechanical properties, heat treatment effects, and defects. J Braz Soc Mech Sci Eng. 2023;45(3):164. doi: 10.1007/s40430-023-04077-1

[17]

Madhvacharyula AS, Pavan AVS, Gorthi S, Chitral S, Venkaiah N, Kiran DV. In situ detection of welding defects: A review. Weld World. 2022;66:611-628. doi: 10.1007/s40194-021-01229-6

[18]

Veiga F, Suárez A, Artaza T, Aldalur E. Effect of the heat input on wire-arc additive manufacturing of invar 36 alloy: Microstructure and mechanical properties. Weld World. 2022;66(6):1081-1091. doi: 10.1007/s40194-022-01295-4

[19]

Veiga F, Suarez A, Aldalur E, Artaza T. Wire arc additive manufacturing of invar parts: Bead geometry and melt pool monitoring. Measurement. 2022;189:110452. doi: 10.1016/j.measurement.2021.110452

[20]

Sood A, Schimmel J, Ferreira VM, et al. Directed energy deposition of invar 36 alloy using cold wire pulsed gas tungsten arc welding: Effect of heat input on the microstructure and functional behaviour. J Mater Res Technol. 2023;25:6183-6197. doi: 10.1016/j.jmrt.2023.06.280

[21]

Norrish J, Cuiuri D. The controlled short circuit GMAW process: A tutorial. J Manuf Process. 2014;16(1):86-92. doi: 10.1016/j.jmapro.2013.08.006

[22]

Bruce M, Deruntz D. Assessing the benefits of surface tension transfer® welding to industry manufacturing materials and processes metals production welding. J Ind Technol. 2003;19:1–8.

[23]

Iturrioz A, Ukar E, Pereira JC. Influence of the manufacturing strategy on the microstructure and mechanical properties of Invar 36 alloy parts manufactured by CMT-WAAM. Int J Adv Manuf Technol. 2025;136(2):729-744. doi: 10.1007/s00170-024-14853-5

[24]

Jiao G, Fang X, Zhang M, et al. Synergistic improvement of mechanical property and thermal expansion of wire-arc DED invar alloy enabled by a novel deposition strategy. J Manuf Process. 2024;121:121-135. doi: 10.1016/j.jmapro.2024.05.031

[25]

Fowler J, Nycz A, Noakes M, M. Masuo C, Vaughan D. Wire-arc additive manufacturing: Invar deposition characterization. In: 2019 International Solid Freeform Fabrication Symposium. Austin, Texas: USA; 2019.

[26]

Aldalur E, Suárez A, Veiga F. Thermal expansion behaviour of invar 36 alloy parts fabricated by wire-arc additive manufacturing. J Mater Res Technol. 2022;19:3634-3645. doi: 10.1016/j.jmrt.2022.06.114

[27]

Jiao G, Fang X, Chen X, et al. The origin of low thermal expansion coefficient and enhanced tensile properties of Invar alloy fabricated by directed energy deposition. J Mater Process Technol. 2023;317:117994. doi: 10.1016/j.jmatprotec.2023.117994

[28]

Doodman Tipi A. The study on the drop detachment for automatic pipeline GMAW system: Free flight mode. Int J Adv Manuf Technol. 2010;50(1-4):137-147. doi: 10.1007/s00170-010-2515-8

[29]

Doodman Tipi AR, Hosseini Sani SK, Pariz N. Improving the dynamic metal transfer model of gas metal arc welding (GMAW) process. Int J Adv Manuf Technol. 2015;76(1):657-668. doi: 10.1007/s00170-014-6307-4

[30]

Mattera G, Vozza M, Polden J, Nele L, Pan Z. Frequency informed convolutional autoencoder for in situ anomaly detection in wire arc additive manufacturing. J Intell Manuf. 2024:1-16. doi: 10.1007/s10845-024-02507-y

[31]

Mattera G, Polden J, Norrish J. Monitoring the gas metal arc additive manufacturing process using unsupervised machine learning. Weld World. 2024;68:2853-2867. doi: 10.1007/s40194-024-01836-z

[32]

Mu H, He F, Yuan L, Commins P, Xu J, Pan Z. High- frequency real-time bead geometry measurement in wire arc additive manufacturing based on welding signals. IEEE Trans Ind Inform. 2024;21:2630-2639. doi: 10.1109/TII.2024.3514121

[33]

Xia C, Pan Z, Polden J, Li H, Xu Y, Chen S. Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning. J Intell Manuf. 2022;33(5):1467-1482. doi: 10.1007/s10845-020-01725-4

[34]

Wu B, Pan Z, Chen G, et al. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling. Sci Technol Weld Join. 2019;24(5):484-494. doi: 10.1080/13621718.2019.1580439

[35]

Colegrove PA, Coules HE, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J Mater Process Technol. 2013;213(10):1782-1791. doi: 10.1016/j.jmatprotec.2013.04.012

[36]

Gullipalli C, Thawari N, Burad P, Gupta TVK. Residual stresses and distortions in additive manufactured Inconel 718. Mater Manuf Process. 2023;38(12):1549-1560. doi: 10.1080/10426914.2023.2165663

[37]

Justus Panicker CT, Rohit Surya K, Senthilkumar V. Novel process parameters based approach for reducing residual stresses in WAAM. Mater Today Process. 2022;59:1119-1126. doi: 10.1016/j.matpr.2022.03.025

[38]

Zavdoveev A, Pozniakov V, Baudin T, et al. Optimization of the pulsed arc welding parameters for wire arc additive manufacturing in austenitic steel applications. Int J Adv Manuf Technol. 2022;119(7-8):5175-5193. doi: 10.1007/s00170-022-08704-4

[39]

De Sousa Figueiredo GG, De Mello Picchi IB, Lima Dos Santos M, López EAT, Oliveira JP, De Abreu Santos TF. Parametric study and response optimization for the wire + arc additive manufacturing of 316LSi via pulsed GMAW. Int J Adv Manuf Technol. 2023;129(7-8):3073-3092. doi: 10.1007/s00170-023-12470-2

[40]

Derekar KS, Addison A, Joshi SS, et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium. Int J Adv Manuf Technol. 2020;107(1-2):311-331. doi: 10.1007/s00170-020-04946-2

[41]

Cai BH, Fan JK, Li J, Yang DQ, Peng Y, Wang KH. Processing, microstructure, and mechanical properties of wire arc additively-manufactured AZ91 magnesium alloy using cold arc process. Trans Nonferrous Metals Soc China. 2025;35(1):91-104. doi: 10.1016/S1003-6326(24)66667-7

[42]

Norrish J. Recent gas metal arc welding (GMAW) process developments: The implications related to international fabrication standards. Weld World. 2017;61(4):755-767. doi: 10.1007/s40194-017-0463-8

AI Summary AI Mindmap
PDF (1696KB)

42

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/