Approaches to dissect the vitamin biosynthetic network of the gut microbiota

Chiara Tarracchini , Francesca Bottacini , Leonardo Mancabelli , Gabriele Andrea Lugli , Francesca Turroni , Douwe van Sinderen , Marco Ventura , Christian Milani

Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (4) : 37

PDF
Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (4) :37 DOI: 10.20517/mrr.2025.66
Review

Approaches to dissect the vitamin biosynthetic network of the gut microbiota

Author information +
History +
PDF

Abstract

B-group vitamins and vitamin K are essential micronutrients required for numerous cellular processes in both microbial and human physiology. While traditionally considered to originate predominantly from dietary sources, the biosynthetic capacity of the human gut microbiota has recently been recognized as a valuable, though historically underappreciated, endogenous source of these vitamins. In particular, the microbial contribution to the host vitamin pool is increasingly acknowledged as a functionally relevant aspect of vitamin homeostasis, especially in the colon, where microbiota-derived vitamins may be absorbed via specific transport mechanisms. This review provides a comprehensive overview of our current understanding of the biosynthesis of B-group vitamins and vitamin K by human gut-associated bacteria, with particular emphasis on key methodologies employed to assess if, how and to what extent members of the gut microbiota supply their host with such micronutrients. Through an integrated overview of available evidence, we highlight both the progress made and the outstanding challenges in elucidating the microbial contribution to the host vitamin metabolism.

Keywords

Microbiome / metagenomics / microbe-microbe interaction

Cite this article

Download citation ▾
Chiara Tarracchini, Francesca Bottacini, Leonardo Mancabelli, Gabriele Andrea Lugli, Francesca Turroni, Douwe van Sinderen, Marco Ventura, Christian Milani. Approaches to dissect the vitamin biosynthetic network of the gut microbiota. Microbiome Research Reports, 2025, 4(4): 37 DOI:10.20517/mrr.2025.66

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kennedy DO.B Vitamins and the brain: mechanisms, dose and efficacy - a review.Nutrients2016;8:68 PMCID:PMC4772032

[2]

Parra M,Hellmann H.Vitamin B6 and its role in cell metabolism and physiology.Cells2018;7:84 PMCID:PMC6071262

[3]

Mukherjee S,Singh S.The role of B vitamins in protecting mitochondrial function. In Ostojic SM, editor. Molecular Nutrition and Mitochondria. Elsevier; 2023. pp. 167-93.

[4]

Godoy-Parejo C,Zhang Y,Chen G.Roles of vitamins in stem cells.Cell Mol Life Sci2020;77:1771-91 PMCID:PMC11104807

[5]

Barker T.Vitamins and human health: systematic reviews and original research.Nutrients2023;15:2888 PMCID:PMC10346564

[6]

Darnton-Hill I.Public health aspects in the prevention and control of vitamin deficiencies.Curr Dev Nutr2019;3:nzz075 PMCID:PMC6775441

[7]

Lykstad J. Biochemistry, water soluble vitamins. StatPearls 2019. Available from: https://pubmed.ncbi.nlm.nih.gov/30860745/ (accessed on 2025-10-15).

[8]

Said HM.Intestinal absorption of water-soluble vitamins in health and disease.Biochem J2011;437:357-72 PMCID:PMC4049159

[9]

Tiwari N,Tripathi P.Vitamins and their impact on human health. In: Singh RL, Singh P, Pathak N, editors. Clinical applications of biomolecules in disease diagnosis. Singapore: Springer Nature; 2024. pp. 129-53.

[10]

Youness RA,ElTahtawy O.Fat-soluble vitamins: updated review of their role and orchestration in human nutrition throughout life cycle with sex differences.Nutr Metab (Lond)2022;19:60 PMCID:PMC9446875

[11]

Mladěnka P,Kujovská Krčmová L.OEMONOM researchers and collaboratorsVitamin K - sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity.Nutr Rev2022;80:677-98 PMCID:PMC8907489

[12]

Liu Z,Wang K,Fitzpatrick TB.B vitamin supply in plants and humans: the importance of vitamer homeostasis.Plant J2022;111:662-82 PMCID:PMC9544542

[13]

Bikle DD.Vitamin D metabolism, mechanism of action, and clinical applications.Chem Biol2014;21:319-29 PMCID:PMC3968073

[14]

Rowland I,Heinken A.Gut microbiota functions: metabolism of nutrients and other food components.Eur J Nutr2018;57:1-24 PMCID:PMC5847071

[15]

LeBlanc JG,de Giori GS,van Sinderen D.Bacteria as vitamin suppliers to their host: a gut microbiota perspective.Curr Opin Biotechnol2013;24:160-8

[16]

McCormick DB.Metabolism of vitamins in microbes and mammals.Biochem Biophys Res Commun2003;312:97-101

[17]

Lin S.Closing in on complete pathways of biotin biosynthesis.Mol Biosyst2011;7:1811-21

[18]

Danchin A.Coenzyme B12 synthesis as a baseline to study metabolite contribution of animal microbiota.Microb Biotechnol2017;10:688-701 PMCID:PMC5481537

[19]

Degnan PH,Goodman AL.Vitamin B12 as a modulator of gut microbial ecology.Cell Metab2014;20:769-78 PMCID:PMC4260394

[20]

Rodionov DA,Mironov AA.Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes.J Biol Chem2003;278:41148-59

[21]

LeBlanc JG,del Valle MJ.B-group vitamin production by lactic acid bacteria - current knowledge and potential applications.J Appl Microbiol2011;111:1297-309

[22]

Tarracchini C,Mancabelli L.Exploring the vitamin biosynthesis landscape of the human gut microbiota.mSystems2024;9:e0092924 PMCID:PMC11494892

[23]

Tarracchini C,Milani C.Vitamin biosynthesis in the gut: interplay between mammalian host and its resident microbiota.Microbiol Mol Biol Rev2025;89:e0018423 PMCID:PMC12188732

[24]

Harmsen HJM.The human gut microbiota. In: Schwiertz A, editor. Microbiota of the Human Body. Cham: Springer International Publishing; 2016. pp. 95-108.

[25]

Leviatan S,Rothschild D,Segal E.An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species.Nat Commun2022;13:3863 PMCID:PMC9256738

[26]

Gustafsson BE,Mcdaniel EG,Fitzgerald RJ.Effects of vitamin K-active compounds and intestinal microorganisms in vitamin K-deficient germfree rats.J Nutr1962;78:461-8

[27]

Ronden JE,Vermeer C.Tissue distribution of K-vitamers under different nutritional regimens in the rat.Biochim Biophys Acta1998;1379:16-22

[28]

Frick PG,Brögli H.Dose response and minimal daily requirement for vitamin K in man.J Appl Physiol1967;23:387-9

[29]

Magnúsdóttir S,de Crécy-Lagard V.Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes.Front Genet2015;6:148 PMCID:PMC4403557

[30]

Allen RH.Identification and quantitation of cobalamin and cobalamin analogues in human feces.Am J Clin Nutr2008;87:1324-35 PMCID:PMC2900183

[31]

Rowley CA.To B12 or not to B12: Five questions on the role of cobalamin in host-microbial interactions.PLoS Pathog2019;15:e1007479 PMCID:PMC6317780

[32]

Wibowo S.Vitamin B, Role of Gut Microbiota and Gut Health. In: Akhtar J, Ahmad M, Irfan Khan M, Badruddeen, editors. Vitamin B and Vitamin E - Pleiotropic and nutritional benefits. IntechOpen; 2024.

[33]

Yoshii K,Sawane K.Metabolism of dietary and microbial vitamin B family in the regulation of host immunity.Front Nutr2019;6:48 PMCID:PMC6478888

[34]

He W,Du X.Vitamin B5 reduces bacterial growth via regulating innate immunity and adaptive immunity in mice infected with mycobacterium tuberculosis.Front Immunol2018;9:365 PMCID:PMC5834509

[35]

Grant ET,Boudaud M.Dietary fibers boost gut microbiota-produced B vitamin pool and alter host immune landscape.Microbiome2024;12:179 PMCID:PMC11418204

[36]

Khan MT,Stams AJ,Flint HJ.The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases.ISME J2012;6:1578-85 PMCID:PMC3400418

[37]

Rodionov DA,Khoroshkin MS.Micronutrient requirements and sharing capabilities of the human gut microbiome.Front Microbiol2019;10:1316 PMCID:PMC6593275

[38]

Arumugam M,Pelletier E.MetaHIT ConsortiumEnterotypes of the human gut microbiome.Nature2011;473:174-80 PMCID:PMC3728647

[39]

Das P,Nielsen J.Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome.BMC Genomics2019;20:208 PMCID:PMC6417177

[40]

Rossi M,Raimondi S.Folate production by probiotic bacteria.Nutrients2011;3:118-34 PMCID:PMC3257725

[41]

Liu M,Sun Y.Probiotic potential of a folate-producing strain latilactobacillus sakei LZ217 and its modulation effects on human gut microbiota.Foods2022;11:234 PMCID:PMC8774781

[42]

Rizzo SM,Tarracchini C.Molecular cross-talk among human intestinal bifidobacteria as explored by a human gut model.Front Microbiol2024;15:1435960 PMCID:PMC11418510

[43]

Overbeek R,Pusch GD.The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST).Nucleic Acids Res2014;42:D206-14 PMCID:PMC3965101

[44]

Sharma V,Leyn SA.B-vitamin sharing promotes stability of gut microbial communities.Front Microbiol2019;10:1485 PMCID:PMC6615432

[45]

Rios-Covian D,Hernandez-Barranco AM.Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria.Appl Environ Microbiol2013;79:7518-24

[46]

Belzer C,Aalvink S.Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts.mBio2017;8:e00770-17

[47]

Soto-Martin EC,Farquharson FM.Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities.mBio2020;11:e00886-20

[48]

Coyte KZ.Understanding competition and cooperation within the mammalian gut microbiome.Curr Biol2019;29:R538-44 PMCID:PMC6935513

[49]

Lee SM,Mikulski Z,Ley K.Bacterial colonization factors control specificity and stability of the gut microbiota.Nature2013;501:426-9 PMCID:PMC3893107

[50]

Abellon-Ruiz J,Silale A.BtuB TonB-dependent transporters and BtuG surface lipoproteins form stable complexes for vitamin B12 uptake in gut Bacteroides.Nat Commun2023;14:4714 PMCID:PMC10404256

[51]

Degnan PH,Mok KC,Goodman AL.Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut.Cell Host Microbe2014;15:47-57 PMCID:PMC3923405

[52]

Mancabelli L,De Biase R.Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide metagenomic investigation.mSystems2024;9:e0129423 PMCID:PMC11019788

[53]

Lonsdale D.A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives.Evid Based Complement Alternat Med2006;3:49-59 PMCID:PMC1375232

[54]

Zastre JA,Hanberry BS.Linking vitamin B1 with cancer cell metabolism.Cancer Metab2013;1:16 PMCID:PMC4178204

[55]

Frank RA,Hirst J.Off-pathway, oxygen-dependent thiamine radical in the Krebs cycle.J Am Chem Soc2008;130:1662-8 PMCID:PMC7610923

[56]

Jurgenson CT,Ealick SE.The structural and biochemical foundations of thiamin biosynthesis.Annu Rev Biochem2009;78:569-603 PMCID:PMC6078420

[57]

Manzetti S,van der Spoel D.Thiamin function, metabolism, uptake, and transport.Biochemistry2014;53:821-35

[58]

Rodionov DA,Mironov AA.Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms.J Biol Chem2002;277:48949-59

[59]

Thakur K,Singh AK,Arora S.Riboflavin and health: a review of recent human research.Crit Rev Food Sci Nutr2017;57:3650-60

[60]

Olfat N,Saedisomeolia A.Riboflavin is an antioxidant: a review update.Br J Nutr2022;128:1887-95

[61]

Alam MM,Naseem I.Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: mechanistic and therapeutic strategies.Arch Biochem Biophys2015;584:10-9

[62]

LeBlanc JG,Sesma F,van Sinderen D.Ingestion of milk fermented by genetically modified Lactococcus lactis improves the riboflavin status of deficient rats.J Dairy Sci2005;88:3435-42

[63]

Ewe JA,Liong MT.Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins.Int J Food Sci Nutr2010;61:87-107

[64]

Thakur K,Kumar N.Riboflavin producing probiotic lactobacilli as a biotechnological strategy to obtain riboflavin-enriched fermented foods.J Pure Appl Microbiol2016;10:161-66. Available from:

[65]

Rollán GC,LeBlanc JG.Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals.Front Nutr2019;6:98 PMCID:PMC6617224

[66]

Kjer-Nielsen L,Corbett AJ.MR1 presents microbial vitamin B metabolites to MAIT cells.Nature2012;491:717-23

[67]

Eckle SB,Keller AN.Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells.J Biol Chem2015;290:30204-11

[68]

Franciszkiewicz K,Legoux F.MHC class I-related molecule, MR1, and mucosal-associated invariant T cells.Immunol Rev2016;272:120-38

[69]

Keller AN,Wubben JM,Rossjohn J.MAIT cells and MR1-antigen recognition.Curr Opin Immunol2017;46:66-74

[70]

Makarov MV,Migaud ME.The chemistry of the vitamin B3 metabolome.Biochem Soc Trans2019;47:131-47 PMCID:PMC6411094

[71]

Kirkland JB.Niacin. In: Eskin NAM, editor. New research and developments of water-soluble vitamins. Elsevier; 2018. pp. 83-149.

[72]

Chen L,Zhang P,Pei H.Homeostatic regulation of NAD(H) and NADP(H) in cells.Genes Dis2024;11:101146 PMCID:PMC11233901

[73]

Fukuwatari T.Nutritional aspect of tryptophan metabolism.Int J Tryptophan Res2013;6:3-8 PMCID:PMC3729278

[74]

Begley TP,Mehl RA,Dorrestein P.The biosynthesis of nicotinamide adenine dinucleotides in bacteria.Vitam Horm2001;61:103-19.

[75]

Chellappa K,Lu W.NAD precursors cycle between host tissues and the gut microbiome.Cell Metab2022;34:1947-1959.e5 PMCID:PMC9825113

[76]

Shats I,Liu J.Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway.Cell Metab2020;31:564-579.e7 PMCID:PMC7194078

[77]

Feng S,Wang H,Liu H.Bacterial PncA improves diet-induced NAFLD in mice by enabling the transition from nicotinamide to nicotinic acid.Commun Biol2023;6:235 PMCID:PMC9981684

[78]

Leonardi R,Rock CO.Coenzyme A: back in action.Prog Lipid Res2005;44:125-53

[79]

Leonardi R.Biosynthesis of pantothenic acid and coenzyme A.EcoSal Plus2007;2:10.1128/ecosalplus.3.6.3.4 PMCID:PMC4950986

[80]

Czumaj A,Hebanowska A.The pathophysiological role of CoA.Int J Mol Sci2020;21:9057 PMCID:PMC7731229

[81]

Percudani R.A genomic overview of pyridoxal-phosphate-dependent enzymes.EMBO Rep2003;4:850-4 PMCID:PMC1326353

[82]

Mooney S,Hendrickson C.Vitamin B6: a long known compound of surprising complexity.Molecules2009;14:329-51 PMCID:PMC6253932

[83]

Denise R,Gerlt JA.Pyridoxal 5’-phosphate synthesis and salvage in bacteria and archaea: predicting pathway variant distributions and holes.Microb Genom2023;9 PMCID:PMC9997740

[84]

Sirithanakorn C.Biotin, a universal and essential cofactor: synthesis, ligation and regulation.FEMS Microbiol Rev2021;45 PMCID:PMC8371270

[85]

Zempleni J,Hassan YI.Biotin.Biofactors2009;35:36-46 PMCID:PMC4757853

[86]

Lin S,Cronan JE.Biotin synthesis begins by hijacking the fatty acid synthetic pathway.Nat Chem Biol2010;6:682-8 PMCID:PMC2925990

[87]

Shulpekova Y,Kardasheva S.The concept of folic acid in health and disease.Molecules2021;26:3731 PMCID:PMC8235569

[88]

Baggott JE.Folate-dependent purine nucleotide biosynthesis in humans.Adv Nutr2015;6:564-71 PMCID:PMC4561830

[89]

Brosnan ME,Stevens JR.Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation?.Biochem J2015;472:135-46

[90]

Mahara FA,Lioe HN.Hypothetical regulation of folate biosynthesis and strategies for folate overproduction in lactic acid bacteria.Prev Nutr Food Sci2023;28:386-400 PMCID:PMC10764224

[91]

Pompei A,Amaretti A,Matteuzzi D.Folate production by bifidobacteria as a potential probiotic property.Appl Environ Microbiol2007;73:179-85 PMCID:PMC1797147

[92]

Deguchi Y,Mutai M.Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria.Agric Biol Chem1985;49:13-9

[93]

Crittenden RG,Playne MJ.Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria.Int J Food Microbiol2003;80:217-22

[94]

Sybesma W,Tijsseling L,Hugenholtz J.Effects of cultivation conditions on folate production by lactic acid bacteria.Appl Environ Microbiol2003;69:4542-8 PMCID:PMC169137

[95]

Kim TH,Darling PB.A large pool of available folate exists in the large intestine of human infants and piglets.J Nutr2004;134:1389-94

[96]

Asrar FM.Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets.J Nutr Biochem2005;16:587-93

[97]

Sepehr E,Storey KB,Lampi BJ.Folate derived from cecal bacterial fermentation does not increase liver folate stores in 28-d folate-depleted male Sprague-Dawley rats.J Nutr2003;133:1347-54

[98]

Pompei A,Amaretti A.Administration of folate-producing bifidobacteria enhances folate status in Wistar rats.J Nutr2007;137:2742-6

[99]

Aufreiter S,Pfeiffer CM.Folate is absorbed across the colon of adults: evidence from cecal infusion of 13C-labeled [6S]-5-formyltetrahydrofolic acid.Am J Clin Nutr2009;90:116-23 PMCID:PMC6443296

[100]

Santos F,de Vos WM,Hugenholtz J.High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112.Appl Environ Microbiol2008;74:3291-4 PMCID:PMC2394963

[101]

Laiño JE,Savoy de Giori G.Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts.Can J Microbiol2012;58:581-8

[102]

Sobczyńska-Malefora A,McCaddon A,Harrington DJ.Vitamin B12 status in health and disease: a critical review. Diagnosis of deficiency and insufficiency - clinical and laboratory pitfalls.Crit Rev Clin Lab Sci2021;58:399-429

[103]

Gherasim C,Banerjee R.Navigating the B12 road: assimilation, delivery, and disorders of cobalamin.J Biol Chem2013;288:13186-93

[104]

Warren MJ,Schubert HL.The biosynthesis of adenosylcobalamin (vitamin B12).Nat Prod Rep2002;19:390-412

[105]

Ortiz JP, Read MN, McClure DD, Holmes A, Dehghani F, Shanahan ER. High throughput genome scale modeling predicts microbial vitamin requirements contribute to gut microbiome community structure.Gut Microbes2022;14:2118831 PMCID:PMC9480837

[106]

Shelton AN,Mok KC.Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics.ISME J2019;13:789-804 PMCID:PMC6461909

[107]

Seetharam B.Absorption and transport of cobalamin (vitamin B12).Annu Rev Nutr1982;2:343-69

[108]

Shearer MJ.Metabolism and cell biology of vitamin K.Thromb Haemost2008;100:530-47

[109]

Kurosu M.Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets?.Molecules2010;15:1531-53 PMCID:PMC6257245

[110]

Theuwissen E,Vermeer C.The role of vitamin K in soft-tissue calcification.Adv Nutr2012;3:166-73 PMCID:PMC3648717

[111]

Johnston JM.Advances in menaquinone biosynthesis: sublocalisation and allosteric regulation.Curr Opin Struct Biol2020;65:33-41

[112]

Hiratsuka T,Ishikawa J.An alternative menaquinone biosynthetic pathway operating in microorganisms.Science2008;321:1670-3

[113]

Nowicka B.Occurrence, biosynthesis and function of isoprenoid quinones.Biochim Biophys Acta2010;1797:1587-605

[114]

Bentley R.Biosynthesis of vitamin K (menaquinone) in bacteria.Microbiol Rev1982;46:241-80 PMCID:PMC281544

[115]

Walther B,Booth SL.Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements.Adv Nutr2013;4:463-73 PMCID:PMC3941825

[116]

Bus K.Relationship between structure and biological activity of various vitamin K forms.Foods2021;10:3136 PMCID:PMC8701896

[117]

Morishita T,Makino T.Production of menaquinones by lactic acid bacteria.J Dairy Sci1999;82:1897-903

[118]

Beulens JW,van den Heuvel EG,Baka A.The role of menaquinones (vitamin K2) in human health.Br J Nutr2013;110:1357-68

[119]

Mansoor S,Tuan TT,Chung YS.Advance computational tools for multiomics data learning.Biotechnol Adv2024;77:108447

[120]

Morgat A,Lombardot T.Updates in Rhea - a manually curated resource of biochemical reactions.Nucleic Acids Res2015;43:D459-64 PMCID:PMC4384025

[121]

Beghini F,Blanco-Míguez A.Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3.Elife2021;10

[122]

Milani C,Fontana F.METAnnotatorX2: a comprehensive tool for deep and shallow metagenomic data set Analyses.mSystems2021;6:101128msystems0058321

[123]

Keegan KP,Meyer F.MG-RAST, a metagenomics service for analysis of microbial community structure and function. In: Martin F, Uroz S, editors. Microbial Environmental Genomics (MEG). New York: Springer; 2016. pp. 207-33.

[124]

Buchfink B,Huson DH.Fast and sensitive protein alignment using DIAMOND.Nat Methods2015;12:59-60

[125]

Langmead B.Fast gapped-read alignment with Bowtie 2.Nat Methods2012;9:357-9 PMCID:PMC3322381

[126]

Li H.Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics2009;25:1754-60 PMCID:PMC2705234

[127]

Nayfach S,Seshadri R,Kyrpides NC.New insights from uncultivated genomes of the global human gut microbiome.Nature2019;568:505-10 PMCID:PMC6784871

[128]

Chandel N,Thakur V.Characterisation of Indian gut microbiome for B-vitamin production and its comparison with Chinese cohort.Br J Nutr2024;131:686-97 PMCID:PMC10803823

[129]

Lloyd-Price J,Ananthakrishnan AN.IBDMDB InvestigatorsMulti-omics of the gut microbial ecosystem in inflammatory bowel diseases.Nature2019;569:655-62

[130]

Jiang Y,Danska J.Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.Microbiome2016;4:2 PMCID:PMC4710996

[131]

Gray AN,Shiver AL,Osadnik H.High-throughput bacterial functional genomics in the sequencing era.Curr Opin Microbiol2015;27:86-95 PMCID:PMC4659725

[132]

Slatko BE,Ausubel FM.Overview of next-generation sequencing technologies.Curr Protoc Mol Biol2018;122:e59 PMCID:PMC6020069

[133]

Hyatt D,Locascio PF,Larimer FW.Prodigal: prokaryotic gene recognition and translation initiation site identification.BMC Bioinformatics2010;11:119 PMCID:PMC2848648

[134]

Seemann T.Prokka: rapid prokaryotic genome annotation.Bioinformatics2014;30:2068-9

[135]

Aziz RK,Best AA.The RAST Server: rapid annotations using subsystems technology.BMC Genomics2008;9:75 PMCID:PMC2265698

[136]

WOODSON HW,BERGEIM O.A study of the microbiological assay of riboflavin.J Am Pharm Assoc Am Pharm Assoc1946;35:253-5

[137]

Kelleher BP.Microbiological assay for vitamin B12 performed in 96-well microtitre plates.J Clin Pathol1991;44:592-5 PMCID:PMC496801

[138]

Kapil B,Singhal V. Microbiological assay for vitamin B. Available from: https://www.researchgate.net/publication/285675266_Microbiological_assay_for_vitamin_B (accessed on 2025-10-15).

[139]

Solopova A,Venturi Degli Esposti E.Riboflavin biosynthesis and overproduction by a derivative of the human gut commensal bifidobacterium longum subsp. infantis ATCC 15697.Front Microbiol2020;11:573335 PMCID:PMC7522473

[140]

Joly C,Léké A.Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and in the rat.Environ Sci Pollut Res Int2013;20:2726-34

[141]

Tanner SA,Rigozzi E,Chassard C.In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota.PLoS One2014;9:e94123 PMCID:PMC3978012

[142]

Krause JL,Fritz-Wallace K.Following the community development of SIHUMIx - a new intestinal in vitro model for bioreactor use.Gut Microbes2020;11:1116-29 PMCID:PMC7524388

[143]

Karkaria BD,Barnes CP.Automated design of synthetic microbial communities.Nat Commun2021;12:672 PMCID:PMC7844305

[144]

Leeuwen PT, Brul S, Zhang J, Wortel MT. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications.FEMS Microbiol Rev2023;47 PMCID:PMC10062696

[145]

Duranti S,Milani C.Bifidobacterium bifidum and the infant gut microbiota: an intriguing case of microbe-host co-evolution.Environ Microbiol2019;21:3683-95

[146]

Lugli GA,Milani C.Genetic insights into the dark matter of the mammalian gut microbiota through targeted genome reconstruction.Environ Microbiol2021;23:3294-305 PMCID:PMC8359967

[147]

Gutleben J,van Elsas JD,Overmann J.The multi-omics promise in context: from sequence to microbial isolate.Crit Rev Microbiol2018;44:212-29

[148]

Lamichhane S,Dickens AM,Bertram HC.Gut metabolome meets microbiome: a methodological perspective to understand the relationship between host and microbe.Methods2018;149:3-12

[149]

Liu J,Cheng H,Feng W.Functions of gut microbiota metabolites, current status and future perspectives.Aging Dis2022;13:1106-26

[150]

Chen MX,Kuo CH.Metabolome analysis for investigating host-gut microbiota interactions.J Formos Med Assoc2019;118 Suppl 1:S10-22

[151]

Zheng S,Chen T.Strategy for comprehensive detection and annotation of gut microbiota-related metabolites based on liquid chromatography-high-resolution mass spectrometry.Anal Chem2024;96:2206-16

[152]

Dettmer K,Hammock BD.Mass spectrometry-based metabolomics.Mass Spectrom Rev2007;26:51-78 PMCID:PMC1904337

[153]

Fiori J,Candela M.Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches.J Pharm Biomed Anal2020;177:112867

[154]

Smirnov KS,Walker A.Challenges of metabolomics in human gut microbiota research.Int J Med Microbiol2016;306:266-79

[155]

Vernocchi P,Putignani L.Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health.Front Microbiol2016;7:1144 PMCID:PMC4960240

[156]

Zheng X,Zhao A.The footprints of gut microbial-mammalian co-metabolism.J Proteome Res2011;10:5512-22

[157]

Calvigioni M,Codini S.HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains.Front Microbiol2023;14:1124144 PMCID:PMC10020375

[158]

Xia Y,Li M.Simultaneous quantification of seven B vitamins in human faeces by stable isotope label-based high-performance liquid chromatography-tandem mass spectrometry.J Pharm Biomed Anal2024;237:115784

[159]

Fatima Z,Zou Y,Quinto M.Recent trends in analytical methods for water-soluble vitamins.J Chromatogr A2019;1606:360245

[160]

Karl JP,Dolnikowski GG,Booth SL.Quantification of phylloquinone and menaquinones in feces, serum, and food by high-performance liquid chromatography-mass spectrometry.J Chromatogr B Analyt Technol Biomed Life Sci2014;963:128-33

[161]

Rappold BA.Review of the use of liquid chromatography-tandem mass spectrometry in clinical laboratories: part II-operations.Ann Lab Med2022;42:531-57 PMCID:PMC9057814

[162]

Levit R,de Moreno de LeBlanc A.Recent update on lactic acid bacteria producing riboflavin and folates: application for food fortification and treatment of intestinal inflammation.J Appl Microbiol2021;130:1412-24

[163]

LeBlanc JG,Savoy de Giori G.Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases.Appl Microbiol Biotechnol2020;104:3331-7

[164]

Chen Y,Zhao J.Exploiting lactic acid bacteria for inflammatory bowel disease: a recent update.Trends Food Sci Technol2023;138:126-40

[165]

Moreno de LeBlanc A, Levit R, de Giori GS, LeBlanc JG. Vitamin producing lactic acid bacteria as complementary treatments for intestinal inflammation.Antiinflamm Antiallergy Agents Med Chem2018;17:50-6

[166]

Levit R,de Moreno de LeBlanc A.Evaluation of the effect of soymilk fermented by a riboflavin-producing Lactobacillus plantarum strain in a murine model of colitis.Benef Microbes2017;8:65-72

[167]

Levit R,de Moreno de LeBlanc A.Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucositis in mice.Nutrition2018;54:165-72

[168]

Levit R,de Moreno de LeBlanc A.Folate-producing lactic acid bacteria reduce inflammation in mice with induced intestinal mucositis.J Appl Microbiol2018;125:1494-501

[169]

Visñuk D, Teran MDM, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective effect of riboflavin producing lactic acid bacteria in parkinsonian models.Neurochem Res2022;47:1269-79

[170]

Visñuk D, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model.Nutrition2020;79-80:110995

[171]

Bjornson-Hooper ZB,Spitzer MH.A comprehensive atlas of immunological differences between humans, mice, and non-human primates.Front Immunol2022;13:867015

[172]

Mestas J.Of mice and not men: differences between mouse and human immunology.J Immunol2004;172:2731-8

[173]

Duan D,Han J.Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications.Front Microbiol2024;15:1509117 PMCID:PMC11739165

[174]

Liu Z,Mathé E,Ma Q.Network analyses in microbiome based on high-throughput multi-omics data.Brief Bioinform2021;22:1639-55 PMCID:PMC7986608

Funding

The work of Marco Ventura was supported by the European Union (NextGeneration EU, PNRR-M4C2-I1.1)

the PRIN 2022 program (Project 20229LEB99; CUP D53D23014150006) for the project "I-MAP"

Davide van Sinderen is funded by Science Foundation Ireland (Grants 12/RC/2273 and 16/SP/3827)

AI Summary AI Mindmap
PDF

397

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/