Approaches to dissect the vitamin biosynthetic network of the gut microbiota
Chiara Tarracchini , Francesca Bottacini , Leonardo Mancabelli , Gabriele Andrea Lugli , Francesca Turroni , Douwe van Sinderen , Marco Ventura , Christian Milani
Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (4) : 37
Approaches to dissect the vitamin biosynthetic network of the gut microbiota
B-group vitamins and vitamin K are essential micronutrients required for numerous cellular processes in both microbial and human physiology. While traditionally considered to originate predominantly from dietary sources, the biosynthetic capacity of the human gut microbiota has recently been recognized as a valuable, though historically underappreciated, endogenous source of these vitamins. In particular, the microbial contribution to the host vitamin pool is increasingly acknowledged as a functionally relevant aspect of vitamin homeostasis, especially in the colon, where microbiota-derived vitamins may be absorbed via specific transport mechanisms. This review provides a comprehensive overview of our current understanding of the biosynthesis of B-group vitamins and vitamin K by human gut-associated bacteria, with particular emphasis on key methodologies employed to assess if, how and to what extent members of the gut microbiota supply their host with such micronutrients. Through an integrated overview of available evidence, we highlight both the progress made and the outstanding challenges in elucidating the microbial contribution to the host vitamin metabolism.
Microbiome / metagenomics / microbe-microbe interaction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
Ortiz JP, Read MN, McClure DD, Holmes A, Dehghani F, Shanahan ER. High throughput genome scale modeling predicts microbial vitamin requirements contribute to gut microbiome community structure.Gut Microbes2022;14:2118831 PMCID:PMC9480837 |
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
Leeuwen PT, Brul S, Zhang J, Wortel MT. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications.FEMS Microbiol Rev2023;47 PMCID:PMC10062696 |
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
Moreno de LeBlanc A, Levit R, de Giori GS, LeBlanc JG. Vitamin producing lactic acid bacteria as complementary treatments for intestinal inflammation.Antiinflamm Antiallergy Agents Med Chem2018;17:50-6 |
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
Visñuk D, Teran MDM, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective effect of riboflavin producing lactic acid bacteria in parkinsonian models.Neurochem Res2022;47:1269-79 |
| [170] |
Visñuk D, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model.Nutrition2020;79-80:110995 |
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
The work of Marco Ventura was supported by the European Union (NextGeneration EU, PNRR-M4C2-I1.1)
the PRIN 2022 program (Project 20229LEB99; CUP D53D23014150006) for the project "I-MAP"
Davide van Sinderen is funded by Science Foundation Ireland (Grants 12/RC/2273 and 16/SP/3827)
/
| 〈 |
|
〉 |