PDF
Abstract
The gastrointestinal tract is the major ecological niche in which gut microbes interact with epithelial and immune cells to maintain homeostasis in mammals. Moreover, probiotics modulate the gut microbiota and exert various health benefits after oral administration and persistence in the gut. Until now, animal models have been the gold standard for unravelling the mechanisms implicated in host-microbe interactions. However, their translational relevance to clinical trials and the associated ethical concerns underscore the need for alternative models. The emergence of microfluidic organ-on-chip technologies provides promising new alternative models to explore human host-microbe interactions while maintaining the tissue-level complexity and inter-individual variability. In this perspective, we discuss the potential of using mice, non-rodent models and gut-on-chip technologies to better characterize the interactions between the host, the gut microbiota, and orally administered probiotics, and to monitor microbial spatiotemporal dynamics at the tissue level.
Keywords
Probiotics
/
gut
/
host-microbiota interactions
/
gut-on-chip
Cite this article
Download citation ▾
Elise Delannoy, Alexandre Grassart, Catherine Daniel.
Gut bioengineered models to study host-microbiota-probiotics interactions.
Microbiome Research Reports, 2025, 4(4): 39 DOI:10.20517/mrr.2025.45
| [1] |
Daniel N,Chassaing B.Host/microbiota interactions in health and diseases-time for mucosal microbiology!.Mucosal Immunol2021;14:1006-16 PMCID:PMC8379076
|
| [2] |
Hou K,Chen XY.Microbiota in health and diseases.Signal Transduct Target Ther2022;7:135 PMCID:PMC9034083
|
| [3] |
Daschner PJ,Espey MG.Redox relationships in gut-microbiome interactions.Free Radic Biol Med2017;105:1-2
|
| [4] |
Fava F,Tuohy KM.Gut microbiota and health: connecting actors across the metabolic system.Proc Nutr Soc2019;78:177-88
|
| [5] |
Jensen BAH,Jonkers D.Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration.Cell Rep Med2023;4:101190 PMCID:PMC10518632
|
| [6] |
Filardy AA,Rezende RM,Oliveira RP.The intestinal microenvironment shapes macrophage and dendritic cell identity and function.Immunol Lett2023;253:41-53 PMCID:PMC9907447
|
| [7] |
Fassarella M,Penders J,Smidt H.Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health.Gut2021;70:595-605
|
| [8] |
Binda S,Johansen E.Criteria to qualify microorganisms as “Probiotic” in foods and dietary supplements.Front Microbiol2020;11:1662 PMCID:PMC7394020
|
| [9] |
Sanders ME,Lebeer S,Klaenhammer TR.Shared mechanisms among probiotic taxa: implications for general probiotic claims.Curr Opin Biotechnol2018;49:207-16
|
| [10] |
Hill C,Reid G.Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat Rev Gastroenterol Hepatol2014;11:506-14
|
| [11] |
Marco ML.Defining how microorganisms benefit human health.Microb Biotechnol2021;14:35-40 PMCID:PMC7888441
|
| [12] |
Ma T,Shi X.Targeting gut microbiota and metabolism as the major probiotic mechanism - an evidence-based review.Trends Food Sci Technol2023;138:178-98
|
| [13] |
Fijan S.Probiotics and their antimicrobial effect.Microorganisms2023;11:528 PMCID:PMC9963354
|
| [14] |
Cristofori F,Dargenio C,Barone M.Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body.Front Immunol2021;12:578386 PMCID:PMC7953067
|
| [15] |
Singh A,Das S,Tyagi PK.Harnessing the power of probiotics: boosting immunity and safeguarding against various diseases and infections.Recent Adv Antiinfect Drug Discov2025;20:5-29
|
| [16] |
Rwubuzizi R,Holzapfel WH.Beneficial, safety, and antioxidant properties of lactic acid bacteria: a next step in their evaluation as potential probiotics.Heliyon2023;9:e15610 PMCID:PMC10161700
|
| [17] |
Aghamohammad S.Antibiotic resistance and the alternatives to conventional antibiotics: the role of probiotics and microbiota in combating antimicrobial resistance.Microbiol Res2023;267:127275
|
| [18] |
Beglari S,Jouriani FH,Aghamohammad S.Novel native probiotics with protective effects against nickel-induced kidney injury: a strategy for heavy metal toxicity.Biometals2025;38:863-71
|
| [19] |
Petrariu OA,Niculescu AG.Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases.Front Microbiol2023;14:1296447 PMCID:PMC10797027
|
| [20] |
Marco ML,Binda S.Health benefits of fermented foods: microbiota and beyond.Curr Opin Biotechnol2017;44:94-102
|
| [21] |
Foligné B,Pot B.Probiotics from research to market: the possibilities, risks and challenges.Curr Opin Microbiol2013;16:284-92
|
| [22] |
Kumari M,Nataraj BH.Fostering next-generation probiotics in human gut by targeted dietary modulation: an emerging perspective.Food Res Int2021;150:110716
|
| [23] |
Zhang H,Cai F.Next-generation probiotics: microflora intervention to human diseases.Biomed Res Int2022;2022:5633403 PMCID:PMC9683952
|
| [24] |
Fentie EG,Jeong M.A comprehensive review of the characterization, host interactions, and stabilization advancements on probiotics: Addressing the challenges in functional food diversification.Compr Rev Food Sci Food Saf2024;23:e13424
|
| [25] |
Yang SY,Lee JY,Lee JE.Advancing gut microbiome research: the shift from metagenomics to multi-omics and future perspectives.J Microbiol Biotechnol2025;35:e2412001 PMCID:PMC12010094
|
| [26] |
Galanis A,Moloney GM.Editorial: omics technologies and bioinformatic tools in probiotic research.Front Microbiol2025;16:1577852 PMCID:PMC11913836
|
| [27] |
Pearce SC,Karl JP,Zachos NC.Intestinal in vitro and ex vivo models to study host-microbiome interactions and acute stressors.Front Physiol2018;9:1584 PMCID:PMC6240795
|
| [28] |
Berkhout M,Plugge C.Use of synthetic communities to study microbial ecology of the gut.Microbiome Res Rep2022;1:4 PMCID:PMC10714298
|
| [29] |
Jans M.A guide to germ-free and gnotobiotic mouse technology to study health and disease.FEBS J2025;292:1228-51
|
| [30] |
Cheng AG,Aranda-Díaz A.Design, construction, and in vivo augmentation of a complex gut microbiome.Cell2022;185:3617-3636.e19 PMCID:PMC9691261
|
| [31] |
Whelan K,Gaiani C.Design and reporting of prebiotic and probiotic clinical trials in the context of diet and the gut microbiome.Nat Microbiol2024;9:2785-94
|
| [32] |
Daniel C,Dennin V.Dual-color bioluminescence imaging for simultaneous monitoring of the intestinal persistence of lactobacillus plantarum and lactococcus lactis in living mice.Appl Environ Microbiol2015;81:5344-9
|
| [33] |
Salomé-Desnoulez S,Foligné B.Persistence and dynamics of fluorescent lactobacillus plantarum in the healthy versus inflamed gut.Gut Microbes2021;13:1-16 PMCID:PMC8009120
|
| [34] |
Cornuault JK,Paquet ME,Moineau S.Zebrafish: a big fish in the study of the gut microbiota.Curr Opin Biotechnol2022;73:308-13
|
| [35] |
Douglas AE.The Drosophila model for microbiome research.Lab Anim (NY)2018;47:157-64 PMCID:PMC6586217
|
| [36] |
McMullen JG 2nd,Cai J,Douglas AE.How gut microbiome interactions affect nutritional traits of Drosophila melanogaster.J Exp Biol2020;223 PMCID:PMC7578357
|
| [37] |
Grenier T.How commensal microbes shape the physiology of Drosophila melanogaster.Curr Opin Insect Sci2020;41:92-9
|
| [38] |
Chen D,Li A.Metabolic fluorine labeling and hotspot imaging of dynamic gut microbiota in mice.Sci Adv2023;9:eabg6808 PMCID:PMC9882976
|
| [39] |
Apostolos AJ,Kolli SH,Rutkowski MR.Real-time non-invasive fluorescence imaging of gut commensal bacteria to detect dynamic changes in the microbiome of live mice.Cell Chem Biol2022:1721-1728.e5 PMCID:PMC10239791
|
| [40] |
Campisciano G.Microbiota in vivo imaging approaches to study host-microbe interactions in preclinical and clinical setting.Heliyon2022;8:e12511 PMCID:PMC9803719
|
| [41] |
Zhang Z,Fang J.In situ live imaging of gut microbiota.mSphere2021;6:e0054521
|
| [42] |
Basic M,Abuja PM.Approaches to discern if microbiome associations reflect causation in metabolic and immune disorders.Gut Microbes2022;14:2107386 PMCID:PMC9361767
|
| [43] |
Kriaa A,De Rudder C.From animal models to gut-on-chip: the challenging journey to capture inter-individual variability in chronic digestive disorders.Gut Microbes2024;16:2333434 PMCID:PMC10978023
|
| [44] |
Leung CM,Ronaldson-bouchard K.A guide to the organ-on-a-chip.Nat Rev Methods Primers2022;2:118
|
| [45] |
Alonso-Roman R,Figge MT.Organ-on-chip models for infectious disease research.Nat Microbiol2024;9:891-904
|
| [46] |
Özkan A,Feitor JF,Ingber DE.Intestinal organ chips for disease modelling and personalized medicine.Nat Rev Gastroenterol Hepatol2024;21:751-73
|
| [47] |
Grassart A,Gobaa S.Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting shigella infection.Cell Host Microbe2019;26:435-444.e4
|
| [48] |
Boquet-Pujadas A,Petracchini A.4D live imaging and computational modeling of a functional gut-on-a-chip evaluate how peristalsis facilitates enteric pathogen invasion.Sci Adv2022;8:eabo5767 PMCID:PMC9586479
|
| [49] |
Kim HJ.Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation.Integr Biol (Camb)2013;5:1130-40
|
| [50] |
Kim HJ,Hamilton G.Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow.Lab Chip2012;12:2165-74
|
| [51] |
Verhulsel M,Bernheim-Dennery M.Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions.Lab Chip2021;21:365-77 PMCID:PMC9930731
|
| [52] |
Nikolaev M,Broguiere N.Homeostatic mini-intestines through scaffold-guided organoid morphogenesis.Nature2020;585:574-8
|
| [53] |
Mitrofanova O,Xu Q.Bioengineered human colon organoids with in vivo-like cellular complexity and function.Cell Stem Cell2024;31:1175-1186.e7
|
| [54] |
Wang Y,Reed MI.A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.Biomaterials2017;128:44-55 PMCID:PMC5392043
|
| [55] |
Shin W,Massidda MW.A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip.Front Bioeng Biotechnol2019;7:13 PMCID:PMC6374617
|
| [56] |
Shin W.Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip.Proc Natl Acad Sci U S A2018;115:E10539-47 PMCID:PMC6233106
|
| [57] |
Kim HJ,Collins JJ.Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.Proc Natl Acad Sci U S A2016;113:E7-15 PMCID:PMC4711860
|
| [58] |
Jalili-Firoozinezhad S,Calamari EL.A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip.Nat Biomed Eng2019;3:520-31 PMCID:PMC6658209
|
| [59] |
Kim R,Sims CE.A Platform for co-culture of primary human colonic epithelium with anaerobic probiotic bacteria.Front Bioeng Biotechnol2022;10:890396 PMCID:PMC9213686
|
| [60] |
Lee KW,Lee CM.Gut-on-a-chip for the analysis of bacteria-bacteria interactions in gut microbial community: what would be needed for bacterial co-culture study to explore the diet-microbiota relationship?.Nutrients2023;15:1131 PMCID:PMC10005057
|
| [61] |
Delannoy E,Janel S.Gut-on-chip methodology based on 3D-printed molds: a cost-effective and accessible approach.Lab Chip2025;25:4396-409
|
| [62] |
Ballerini M,Tyagi P.A gut-on-a-chip incorporating human faecal samples and peristalsis predicts responses to immune checkpoint inhibitors for melanoma.Nat Biomed Eng2025;9:967-84 PMCID:PMC12176660
|
| [63] |
Shah P,Glaab E.A microfluidics-based in vitro model of the gastrointestinal human-microbe interface.Nat Commun2016;7:11535 PMCID:PMC4865890
|
| [64] |
Kasendra M,Yin J.Duodenum intestine-chip for preclinical drug assessment in a human relevant model.Elife2020;9
|
| [65] |
Kasendra M,Sontheimer-Phelps A.Development of a primary human small intestine-on-a-chip using biopsy-derived organoids.Sci Rep2018;8:2871 PMCID:PMC5811607
|
| [66] |
Moerkens R,Ramírez-Sánchez AD.An iPSC-derived small intestine-on-chip with self-organizing epithelial, mesenchymal, and neural cells.Cell Rep2024;43:114247
|
| [67] |
Eslami Amirabadi H,Wierenga E.Intestinal explant barrier chip: long-term intestinal absorption screening in a novel microphysiological system using tissue explants.Lab Chip2022;22:326-42
|
| [68] |
Donkers JM,van den Broek TJ.A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome.Microbiome Res Rep2024;3:18 PMCID:PMC11149092
|
| [69] |
Zhu W,Wang D,Ma GL.Simulator of the human intestinal microbial ecosystem (SHIME®): Current Developments, Applications, and Future Prospects.Pharmaceuticals (Basel)2024;17:1639 PMCID:PMC11677124
|
| [70] |
Maurer M,Last A.A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies.Biomaterials2019;220:119396
|
| [71] |
Dakal TC,Kumar A.Advanced computational tools, artificial intelligence and machine-learning approaches in gut microbiota and biomarker identification.Front Med Technol2024;6:1434799 PMCID:PMC12037385
|
| [72] |
Metwaly A,Hassani Z.IHMCSA ConsortiumA consensus statement on establishing causality, therapeutic applications and the use of preclinical models in microbiome research.Nat Rev Gastroenterol Hepatol2025;22:343-56
|