Whole-genome sequencing and analysis of a novel strain Streptococcus oralis CRC211 from colorectal tumor

Yunjie Shi , Ling Liu , Jing Wu , Minxin Gao , Kaiwen Sheng , Weiliang Hou , Xu Li , Hao Wang

Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (3) : 33

PDF
Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (3) :33 DOI: 10.20517/mrr.2025.41
Original Article

Whole-genome sequencing and analysis of a novel strain Streptococcus oralis CRC211 from colorectal tumor

Author information +
History +
PDF

Abstract

Aim: This study provides a comprehensive genomic characterization of Streptococcus oralis CRC211, a novel bacterial strain isolated from colorectal tumor tissue.

Methods: Whole-genome sequencing and comparative genomic analyses were performed.

Results: The high-quality assembled genome (15.03 Mb, 40.94% guanine-cytosine content) contains 2 prophage regions spanning 160.5 kb, which may facilitate the horizontal transfer of virulence genes. Functional annotation identified 3,674 genes, with significant enrichment in metabolic pathways (amino acid and carbohydrate metabolism) and virulence factors (116 genes in Virulence Factors Batabase), including adhesins and biofilm-associated proteins that likely promote tumor colonization. Comparative genomic analysis revealed that CRC211 shares 92.29% average nucleotide identity with reference Streptococcus oralis strains, while pan-genome analysis demonstrated an open genome structure with 1,222 conserved core genes. In addition, the strain also carries 75 antimicrobial resistance genes, underscoring its potential clinical relevance. Notably, the genomic profile indicates adaptations for nutrient acquisition and immune evasion in the tumor microenvironment.

Conclusion: These findings establish CRC211 as a colorectal cancer (CRC)-associated strain with distinct genomic features that may contribute to tumor progression. The study provides critical insights into its possible oncogenic mechanisms and highlights potential applications in mic ases,indels - changerobiota-based diagnostics or therapeutics for colorectal cancer.

Keywords

Colorectal cancer, whole-genome sequencing, Streptococcus oralis CRC211 / intratumoral microbiota

Cite this article

Download citation ▾
Yunjie Shi, Ling Liu, Jing Wu, Minxin Gao, Kaiwen Sheng, Weiliang Hou, Xu Li, Hao Wang. Whole-genome sequencing and analysis of a novel strain Streptococcus oralis CRC211 from colorectal tumor. Microbiome Research Reports, 2025, 4(3): 33 DOI:10.20517/mrr.2025.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sears CL.Microbial diagnostics for cancer: a step forward but not prime time yet.Cancer Cell.2020;37:625-7

[2]

Livyatan I,Shental N.Characterization of the human tumor microbiome reveals tumor-type specific intra-cellular bacteria.Oncoimmunology.2020;9:1800957 PMCID:PMC7466861

[3]

Li N,Chen Q.A gene delivery system with autophagy blockade for enhanced anti-angiogenic therapy against Fusobacterium nucleatum-associated colorectal cancer.Acta Biomater.2024;183:278-91

[4]

Tavano F,Gioffreda D.Could the microbial profiling of normal pancreatic tissue from healthy organ donors contribute to understanding the intratumoral microbiota signature in pancreatic ductal adenocarcinoma?.Microorganisms.2025;13:452 PMCID:PMC11858623

[5]

Uribe-herranz M,Beghi S.Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response.J Clin Invest.2019;130:466-79

[6]

Yang Q,Zheng Q.A review of gut microbiota-derived metabolites in tumor progression and cancer therapy.Adv Sci (Weinh).2023;10:2207366 PMCID:PMC10214247

[7]

Rubinstein MR,Liu W,Cai G.Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin.Cell Host Microbe.2013;14:195-206 PMCID:PMC3770529

[8]

Galeano Niño JL,Lacourse KD.Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer.Nature.2022;611:810-7 PMCID:PMC9684076

[9]

Louis P,Flint HJ.The gut microbiota, bacterial metabolites and colorectal cancer.Nat Rev Microbiol.2014;12:661-72

[10]

Castellarin M,Freeman JD.Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma.Genome Res.2012;22:299-306 PMCID:PMC3266037

[11]

Kostic AD,Robertson L.Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment.Cell Host Microbe.2013;14:207-15 PMCID:PMC3772512

[12]

Gur C,Isaacson B.Binding of the Fap2 Protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack.Immunity.2015;42:344-55 PMCID:PMC4361732

[13]

Kumar R,Schady D.Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development.PLoS Pathog.2017;13:e1006440 PMCID:PMC5509344

[14]

Yamamura K,Nakagawa S.Human microbiome in esophageal cancer tissue is associated with prognosis.Clin Cancer Res.2016;22:5574-81

[15]

Abed J,Manson AL.Colon cancer-associated fusobacterium nucleatum may originate from the oral cavity and reach colon tumors via the circulatory system.Front Cell Infect Microbiol.2020;10:400 PMCID:PMC7426652

[16]

Tjalsma H,Marchesi JR.A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects.Nat Rev Microbiol.2012;10:575-82

[17]

Meier-kolthoff JP,Klenk HP.Genome sequence-based species delimitation with confidence intervals and improved distance functions.BMC Bioinformatics.2013;14:60 PMCID:PMC3665452

[18]

Chaumeil PA,Hugenholtz P,Hancock J.GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database.Bioinformatics.2020;36:1925-7 PMCID:PMC7703759

[19]

Ding T,Li Z.The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications.Mol Cancer.2025;24:18 PMCID:PMC11734361

[20]

Camañes-gonzalvo S,Lobo-de-mena M.Relationship between oral microbiota and colorectal cancer: a systematic review.J Periodontal Res.2024;59:1071-82 PMCID:PMC11626693

[21]

Shigematsu Y,Amori G.Fusobacterium nucleatum, immune responses, and metastatic organ diversity in colorectal cancer liver metastasis.Cancer Sci.2024;115:3248-55 PMCID:PMC11447885

[22]

Ribeiro HG,Melo LDR.Analysis of intact prophages in genomes of Paenibacillus larvae: an important pathogen for bees.Front Microbiol.2022;13:903861 PMCID:PMC9341999

[23]

Bucher MJ.Phage against the machine: the SIE-ence of superinfection exclusion.Viruses.2024;16:1348 PMCID:PMC11436027

[24]

Joyce LR,Cormaty H.Comparative genomics of streptococcus oralis identifies large scale homologous recombination and a genetic variant associated with infection.mSphere.2022;7:e00509-22 PMCID:PMC9769543

[25]

Liu X,Mu W.Autophagic flux-lipid droplet biogenesis cascade sustains mitochondrial fitness in colorectal cancer cells adapted to acidosis.Cell Death Discov.2025;11:21 PMCID:PMC11761495

[26]

Wang L,Zhou Y.Oral microbial translocation genes in gastrointestinal cancers: insights from metagenomic analysis.Microorganisms.2024;12:2086 PMCID:PMC11510655

[27]

Sun J,Yu S.F. nucleatum facilitates oral squamous cell carcinoma progression via GLUT1-driven lactate production.EBioMedicine.2023;88:104444 PMCID:PMC9900488

[28]

Marongiu GL,Schöpf F,Von Kries JP.Structural basis for immune cell binding of via the trimeric autotransporter adhesin CbpF.Proc Natl Acad Sci U S A.2025;122:e2418155122 PMCID:PMC12012533

[29]

Duizer C,Van Gogh M.Fusobacterium nucleatum upregulates the immune inhibitory receptor in colorectal cancer cells via the activation of ALPK1.Gut Microbes.2025;17:2458203 PMCID:PMC11784648

[30]

Afordoanyi DM,Shnakhova L,Diabankana RGC.Biotechnological key genes of the rhodococcus erythropolis MGMM8 genome: genes for bioremediation, antibiotics, plant protection, and growth stimulation.Microorganisms.2023;12:88 PMCID:PMC10819586

[31]

Lamaudière MTF,Weedall GD,Young VB.The colorectal cancer gut environment regulates activity of the microbiome and promotes the multidrug resistant phenotype of ESKAPE and other pathogens.mSphere.2023;8:e00626-22 PMCID:PMC10117110

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/