Synbiotic modulation of adult gut microbiome by 2′-fucosyllactose and Bifidobacterium longum subsp. infantis EFEL8008

Dong Hyeon Lee , Hyunbin Seong , Seul-Ah Kim , Nam Soo Han

Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (3) : 26

PDF
Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (3) :26 DOI: 10.20517/mrr.2025.35
Original Article

Synbiotic modulation of adult gut microbiome by 2′-fucosyllactose and Bifidobacterium longum subsp. infantis EFEL8008

Author information +
History +
PDF

Abstract

Aim: This study aimed to evaluate the combination of 2′-fucosyllactose (2′-FL) and Bifidobacterium longum subsp. infantis (B. infantis) EFEL8008 as a synbiotic pair for adult gut health, using an in vitro digestion and fecal fermentation model.

Methods: The resistance of 2′-FL to digestion was evaluated through simulated digestion encompassing oral, gastric, intestinal, and brush border membrane phases. Fecal fermentation was conducted using adult microbiota to investigate taxonomic and metabolic alterations following treatment with 2′-FL, EFEL8008, or their combination. Microbial composition was profiled using 16S rRNA gene sequencing and quantitative PCR targeting B. infantis. Short-chain fatty acids (SCFAs) and trimethylamine (TMA) levels were quantified by 1H-NMR.

Results: A total of 86.67% of 2′-FL remained intact after digestion, demonstrating its resistance to digestion throughout the upper gastrointestinal tract. The synbiotic combination significantly increased Bifidobacterium abundance and improved alpha diversity compared to single treatments. Heat tree and correlation analyses indicated selective enrichment of commensal taxa including Bifidobacterium and Lactobacillus, accompanied by a reduction in the abundance of potentially pathogenic genera such as Escherichia-Shigella. In addition, co-treatment markedly elevated the concentrations of acetate, propionate, lactate, and butyrate, and suppressed the microbial conversion of betaine to TMA, suggesting a favorable metabolic outcome.

Conclusion: These results demonstrate that the synbiotic combination of 2′-FL and EFEL8008 promotes beneficial microbial modulation, enhances metabolite production, and supports gut health, highlighting its potential as a next-generation synbiotic strategy.

Keywords

2′-Fucosyllactose / Bifidobacterium longum subsp. infantis / synbiotics / in vitro digestion / in vitro fecal fermentation

Cite this article

Download citation ▾
Dong Hyeon Lee, Hyunbin Seong, Seul-Ah Kim, Nam Soo Han. Synbiotic modulation of adult gut microbiome by 2′-fucosyllactose and Bifidobacterium longum subsp. infantis EFEL8008. Microbiome Research Reports, 2025, 4(3): 26 DOI:10.20517/mrr.2025.35

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu Y,Li W.Recent advances on 2′-fucosyllactose: physiological properties, applications, and production approaches.Crit Rev Food Sci Nutr2022;62:2083-92

[2]

Hill DR,Buck RH.Multifunctional benefits of prevalent HMOs: implications for infant health.Nutrients2021;13:3364 PMCID:PMC8539508

[3]

Zhou W,Wang L,Mao X.Biotechnological production of 2′-fucosyllactose: a prevalent fucosylated human milk oligosaccharide.ACS Synth Biol2021;10:447-58

[4]

Bode L.Human milk oligosaccharides: every baby needs a sugar mama.Glycobiology2012;22:1147-62 PMCID:PMC3406618

[5]

Lordan C,Delsing D.Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond.Microbiol Mol Biol Rev2024;88:e0009423 PMCID:PMC10966949

[6]

Lee WH,Quarterman J.Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli.Microb Cell Fact2012;11:48 PMCID:PMC3442965

[7]

Lee YG,Lee DH.De novo biosynthesis of 2′-fucosyllactose by bioengineered Corynebacterium glutamicum.Biotechnol J2024;19:e2300461

[8]

Turroni F,Ventura M.The human gut microbiota during the initial stages of life: insights from bifidobacteria.Curr Opin Biotechnol2022;73:81-7

[9]

Gotoh A,Sakanaka M.Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum.Sci Rep2018;8:13958 PMCID:PMC6143587

[10]

Locascio RG,Kronewitter SR.A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides.Microb Biotechnol2009;2:333-42 PMCID:PMC3815754

[11]

Button JE,Reens AL.Dosing a synbiotic of human milk oligosaccharides and B. infantis leads to reversible engraftment in healthy adult microbiomes without antibiotics.Cell Host Microbe2022;30:712-25.e7

[12]

Batta VK,Patole SK. Bifidobacterium infantis as a probiotic in preterm infants: a systematic review and meta-analysis.Pediatr Res2023;94:1887-905 PMCID:PMC10665187

[13]

Dargenio VN,Brindicci VF.Impact of Bifidobacterium longum subspecies infantis on pediatric gut health and nutrition: current evidence and future directions.Nutrients2024;16:3510 PMCID:PMC11510697

[14]

Gavzy SJ,Lee ZL,Ma B.Bifidobacterium mechanisms of immune modulation and tolerance.Gut Microbes2023;15:2291164 PMCID:PMC10730214

[15]

Swanson KS,Hutkins R.The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics.Nat Rev Gastroenterol Hepatol2020;17:687-701 PMCID:PMC7581511

[16]

Mohanty D,Mohapatra S.Prebiotics and synbiotics: recent concepts in nutrition.Food Biosci2018;26:152-60

[17]

Ebrahimi ZS,Nadjarzade A.Effect of symbiotic supplementation on glycemic control, lipid profiles and microalbuminuria in patients with non-obese type 2 diabetes: a randomized, double-blind, clinical trial.J Diabetes Metab Disord2017;16:23 PMCID:PMC5457616

[18]

Khalesi S,Campbell K.Effect of probiotics and synbiotics consumption on serum concentrations of liver function test enzymes: a systematic review and meta-analysis.Eur J Nutr2018;57:2037-53

[19]

Tabrizi R,Lankarani KB.The effects of synbiotic supplementation on glucose metabolism and lipid profiles in patients with diabetes: a systematic review and meta-analysis of randomized controlled trials.Probiotics Antimicrob Proteins2018;10:329-42

[20]

Gomez Quintero DF, Kok CR, Hutkins R. The future of synbiotics: rational formulation and design.Front Microbiol2022;13:919725 PMCID:PMC9354465

[21]

Ranadheera C,Rocha R,Ajlouni S.Probiotic delivery through fermentation: dairy vs. non-dairy beverages.Fermentation2017;3:67

[22]

Chan CKY,Chan OS,Pang H.Preventing respiratory tract infections by synbiotic interventions: a systematic review and meta-analysis of randomized controlled trials.Adv Nutr2020;11:979-88 PMCID:PMC7360463

[23]

Li F,Sun X.Molecular recognition and activation mechanism of short-chain fatty acid receptors FFAR2/3.Cell Res2024;34:323-6 PMCID:PMC10978569

[24]

Zierer J,Kastenmüller G.The fecal metabolome as a functional readout of the gut microbiome.Nat Genet2018;50:790-5 PMCID:PMC6104805

[25]

Day-Walsh P,Saha S.The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota.Eur J Nutr2021;60:3987-99 PMCID:PMC8437865

[26]

Arias N,Allison J.The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases.Nutrients2020;12:2340 PMCID:PMC7468957

[27]

Lee DH. Development of synbiotics with 2′-fucosyllactose and Bifidobacterium spp. and analysis of their prebiotic effects. Cheongju: Chungbuk National University; 2022. Available from: https://chungbuk.dcollection.net/srch/srchDetail/200000771040. [Last accessed on 21 Jul 2025]

[28]

Minekus M,Alvito P.A standardised static in vitro digestion method suitable for food - an international consensus.Food Funct2014;5:1113-24

[29]

Gnoth MJ,Kinne-Saffran E.Human milk oligosaccharides are minimally digested in vitro.J Nutr2000;130:3014-20

[30]

Seong H,Seo JS,Kim T.Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation.J Funct Foods2019;57:408-16

[31]

Klindworth A,Schweer T.Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.Nucleic Acids Res2013;41:e1 PMCID:PMC3592464

[32]

Bokulich NA,Faith JJ.Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing.Nat Methods2013;10:57-9 PMCID:PMC3531572

[33]

Bolyen E,Dillon MR.Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.Nat Biotechnol2019;37:852-7 PMCID:PMC7015180

[34]

Chong J,Zhou G.Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data.Nat Protoc2020;15:799-821

[35]

Baek H,Min W.A species-specific qPCR method for enumeration of Lactobacillus sanfranciscensis, Lactobacillus brevis, and Lactobacillus curvatus during cocultivation in sourdough.Food Anal Methods2021;14:750-60

[36]

Bo B,Kim G.Antioxidant and prebiotic activities of Laphet, fermented tea leaves in Myanmar, during in vitro gastrointestinal digestion and colonic fermentation.J Funct Foods2022;95:105193

[37]

Valero-Cases E,Pastor JJ.Non-dairy fermented beverages as potential carriers to ensure probiotics, prebiotics, and bioactive compounds arrival to the gut and their health benefits.Nutrients2020;12:1666 PMCID:PMC7352914

[38]

McConnell RE,Mao S,Tyska MJ.Proteomic analysis of the enterocyte brush border.Am J Physiol Gastrointest Liver Physiol2011;300:G914-26 PMCID:PMC3094140

[39]

Jorba I,Hermans LHL,Kurniawan NA.In vitro methods to model cardiac mechanobiology in health and disease.Tissue Eng Part C Methods2021;27:139-51 PMCID:PMC7984657

[40]

Moon JS,Bang J.Application of in vitro gut fermentation models to food components: a review.Food Sci Biotechnol2016;25:1-7 PMCID:PMC6049408

[41]

Lee DH,Chang D.Evaluating the prebiotic effect of oligosaccharides on gut microbiome wellness using in vitro fecal fermentation.NPJ Sci Food2023;7:18 PMCID:PMC10170090

[42]

Pujari R.Impact of prebiotics on immune response: from the bench to the clinic.Immunol Cell Biol2021;99:255-73

[43]

Sierra S,Sempere L,Boza J.Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults.Anaerobe2010;16:195-200

[44]

Lahti L,Kekkonen RA.Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data.PeerJ2013;1:e32 PMCID:PMC3628737

[45]

Kristensen NB,Allin KH,Hansen TH.Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials.Genome Med2016;8:52 PMCID:PMC4862129

[46]

Bazanella M,Clavel T.Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome.Am J Clin Nutr2017;106:1274-86

[47]

Markowiak P.Effects of probiotics, prebiotics, and synbiotics on human health.Nutrients2017;9:1021 PMCID:PMC5622781

[48]

Ryan JJ,Contractor N.Impact of 2′-fucosyllactose on gut microbiota composition in adults with chronic gastrointestinal conditions: batch culture fermentation model and pilot clinical trial findings.Nutrients2021;13:938 PMCID:PMC7998190

[49]

Sela DA,Lerno L.Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides.Appl Environ Microbiol2012;78:795-803 PMCID:PMC3264123

[50]

Bunesova V,Schwab C.Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense.BMC Microbiol2016;16:248 PMCID:PMC5080750

[51]

Kim DH,Kim H.Detection and enumeration of lactic acid bacteria, acetic acid bacteria and yeast in Kefir grain and milk using quantitative real-time PCR.J Food Saf2015;35:102-7

[52]

Matsuo Y,Yasumizu Y.Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution.BMC Microbiol2021;21:35 PMCID:PMC7836573

[53]

Lawley B,Watanabe J.tuf Gene sequence variation in Bifidobacterium longum subsp. infantis detected in the fecal microbiota of Chinese infants.Appl Environ Microbiol2018;84:e00336-18 PMCID:PMC6007102

[54]

O’Brien CE,Cernioglo K.Early probiotic supplementation with B. infantis in breastfed infants leads to persistent colonization at 1 year.Pediatr Res2022;91:627-36 PMCID:PMC8460680

[55]

Xie Z,Gobbi A,Nielsen DS.The effect of in vitro simulated colonic pH gradients on microbial activity and metabolite production using common prebiotics as substrates.BMC Microbiol2024;24:83 PMCID:PMC10926653

[56]

Valdés-Varela L,Gueimonde M.In vitro fermentation of different fructo-oligosaccharides by Bifidobacterium strains for the selection of synbiotic combinations.Int J Food Microbiol2017;242:19-23

[57]

Engelstoft MS,Sakata I.Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells.Mol Metab2013;2:376-92 PMCID:PMC3854997

[58]

Liu F,Chen M.Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population.Sci Rep2017;7:11789 PMCID:PMC5603605

[59]

Rath S,Pieper DH.Uncovering the trimethylamine-producing bacteria of the human gut microbiota.Microbiome2017;5:54 PMCID:PMC5433236

[60]

Romano KA,Amador-Noguez D.Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.mBio2015;6:e02481 PMCID:PMC4453578

[61]

Wang H,Fang S,Feng J.Betaine improves intestinal functions by enhancing digestive enzymes, ameliorating intestinal morphology, and enriching intestinal microbiota in high-salt stressed rats.Nutrients2018;10:907 PMCID:PMC6073560

[62]

Merenstein DJ,Karl JP.Is there evidence to support probiotic use for healthy people?.Adv Nutr2024;15:100265 PMCID:PMC11342770

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/