PDF
Abstract
The gut microbiota critically regulates lipid metabolism through microbial metabolites and host signaling pathways. Short-chain fatty acids (SCFAs), derived from dietary fiber fermentation, suppress hepatic lipogenesis via inhibition of SREBP-1c and enhance mitochondrial β-oxidation through GPR41/43 activation. Microbial enzymes convert primary bile acids into secondary bile acids, which activate FXR to inhibit lipogenesis and TGR5 to promote adipose thermogenesis. Lipopolysaccharide (LPS) from dysbiotic microbiota triggers TLR4-NF-κB signaling, exacerbating insulin resistance and adipose inflammation. Branched-chain amino acids (BCAAs), metabolized by gut microbes, drive adipogenesis via mTORC1-PPARγ signaling, with elevated circulating BCAAs linked to obesity. In livestock, microbiota modulation optimizes fat deposition: probiotics in pigs enhance intramuscular fat via Lactobacillus-enriched communities, while dietary succinate or coated sodium propionate reduces abdominal fat in broilers by reshaping cecal microbiota. Fecal microbiota transplantation confirms microbial causality in transferring fat phenotypes. Dysbiosis-associated mechanisms are conserved across species, where SCFAs and bile acids ameliorate metabolic inflammation, whereas LPS and BCAA imbalances worsen lipid dysregulation. Metabolic disorders, including obesity, type 2 diabetes (T2D), and non-alcoholic fatty liver disease (NAFLD), are tightly linked to gut microbiota perturbations. Dysbiosis drives LPS translocation and barrier impairment. These changes, along with altered metabolites, promote inflammation and fat deposition. Future strategies should integrate multi-omics and precision engineering of microbial consortia to advance therapies for both livestock and human metabolic health.
Keywords
Gut microbiota
/
fat deposition
/
short-chain fatty acids
/
bile acids
/
metabolic disorders
/
chicken
/
obesity
Cite this article
Download citation ▾
Xiaoyan Cui, Qianwen Yuan, Jiali Long, Jiaxin Zhou.
Recent advances in gut microbiota-mediated regulation of fat deposition and metabolic disorders.
Microbiome Research Reports, 2025, 4(3): 31 DOI:10.20517/mrr.2025.25
| [1] |
Bäckhed F,Wang T.The gut microbiota as an environmental factor that regulates fat storage.Proc Natl Acad Sci U S A2004;101:15718-23 PMCID:PMC524219
|
| [2] |
Valsecchi C,Castellazzi A.Gut microbiota and obesity.J Clin Gastroenterol2016;50:S157-8
|
| [3] |
Conterno L,Viola R.Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease?.Genes Nutr2011;6:241-60 PMCID:PMC3145060
|
| [4] |
Anand S.Host-microbiome interactions: gut-liver axis and its connection with other organs.NPJ Biofilms Microbiomes2022;8:89 PMCID:PMC9626460
|
| [5] |
Cai J,Jiang C,Patterson AD.Bile acid metabolism and signaling, the microbiota, and metabolic disease.Pharmacol Ther2022;237:108238
|
| [6] |
Bäckhed F,Semenkovich CF.Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.Proc Natl Acad Sci U S A2007;104:979-84 PMCID:PMC1764762
|
| [7] |
Ellekilde M,Larsen CS.Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice.Sci Rep2014;4:5922 PMCID:PMC4118149
|
| [8] |
Vajro P,Fasano A.Microbiota and gut-liver axis: their influences on obesity and obesity-related liver disease.J Pediatr Gastroenterol Nutr2013;56:461-8 PMCID:PMC3637398
|
| [9] |
Zheng C,Guo Q,Yin Y.Glutamate increases the lean percentage and intramuscular fat content and alters gut microbiota in Shaziling pigs.Anim Nutr2025;20:110-9 PMCID:PMC11833783
|
| [10] |
Wang F,Yao M.Dietary succinate reduces fat deposition through gut microbiota and lipid metabolism in broilers.Poult Sci2024;103:103954 PMCID:PMC11253672
|
| [11] |
Wang L,Gober HJ.Alterations in the intestinal microbiome associated with PCOS affect the clinical phenotype.Biomed Pharmacother2021;133:110958
|
| [12] |
Cui X,Jiang Z.Dietary fiber modulates abdominal fat deposition associated with cecal microbiota and metabolites in yellow chickens.Poult Sci2022;101:101721 PMCID:PMC8866719
|
| [13] |
Breton J,Déchelotte P.Dysbiotic gut bacteria in obesity: an overview of the metabolic mechanisms and therapeutic perspectives of next-generation probiotics.Microorganisms2022;10:452 PMCID:PMC8877435
|
| [14] |
Guzzardi MA,Iozzo P.Trust the gut: outcomes of gut microbiota transplant in metabolic and cognitive disorders.Neurosci Biobehav Rev2023;149:105143
|
| [15] |
Houtman TA,Smidt H.Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers.Sci Rep2022;12:3140 PMCID:PMC8873392
|
| [16] |
Ley RE,Turnbaugh P,Knight RD.Obesity alters gut microbial ecology.Proc Natl Acad Sci U S A2005;102:11070-5 PMCID:PMC1176910
|
| [17] |
May KS.Modulation of adipocyte metabolism by microbial short-chain fatty acids.Nutrients2021;13:3666 PMCID:PMC8538331
|
| [18] |
Cheng Z,Yang L.The critical role of gut microbiota in obesity.Front Endocrinol2022;13:1025706 PMCID:PMC9630587
|
| [19] |
Kieffer DA,Marco ML.Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria.J Nutr2016;146:2476-90 PMCID:PMC5118768
|
| [20] |
Zhang L,Li H.Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal-weight subjects: a randomized crossover trial.Sci Rep2019;9:4736 PMCID:PMC6426958
|
| [21] |
Cho KY.Association of gut microbiota with obesity in children and adolescents.Clin Exp Pediatr2023;66:148-54 PMCID:PMC10080385
|
| [22] |
Wang G,Sun C.Gut microbiota and metabolite insights into anti-obesity effect of carboxymethyl pachymaran in high-fat diet mice.J Funct Foods2023;111:105898
|
| [23] |
Yin J,Tian Y.Obese Ningxiang pig-derived microbiota rewires carnitine metabolism to promote muscle fatty acid deposition in lean DLY pigs.Innovation2023;4:100486 PMCID:PMC10448216
|
| [24] |
Li C,Zhao G.Comparative analysis of structural composition and function of intestinal microbiota between Chinese indigenous Laiwu Pigs and commercial DLY Pigs.Vet Sci2023;10:524 PMCID:PMC10458769
|
| [25] |
Yang M,Wang J.Ningxiang pig-derived lactobacillus reuteri modulates host intramuscular fat deposition via branched-chain amino acid metabolism.Microbiome2025;13:32 PMCID:PMC11786426
|
| [26] |
Bergamaschi M,Howard J.Gut microbiome composition differences among breeds impact feed efficiency in swine.Microbiome2020;8:110 PMCID:PMC7376719
|
| [27] |
Shang P,Duan M,Chamba Y.Healthy gut microbiome composition enhances disease resistance and fat deposition in Tibetan Pigs.Front Microbiol2022;13:965292 PMCID:PMC9343729
|
| [28] |
Luo Y,Smidt H.Dynamic distribution of gut microbiota in pigs at different growth stages: composition and contribution.Microbiol Spectr2022;10:e0068821 PMCID:PMC9241710
|
| [29] |
Wu C,Hong Q,Yang H.Gut microbiota influence lipid metabolism of skeletal muscle in pigs.Front Nutr2021;8:675445 PMCID:PMC8076524
|
| [30] |
Wen C,Sun C.The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens.ISME J2019;13:1422-36 PMCID:PMC6775986
|
| [31] |
Chen Y,Ma Z.Chicken cecal microbiota reduces abdominal fat deposition by regulating fat metabolism.NPJ Biofilms Microbiomes2023;9:28 PMCID:PMC10229630
|
| [32] |
Liu X,Wang Y.Age-associated changes in the growth development of abdominal fat and their correlations with cecal gut microbiota in broiler chickens.Poult Sci2023;102:102900 PMCID:PMC10466292
|
| [33] |
Liu Y,Liu X.Dietary folic acid addition reduces abdominal fat deposition mediated by alterations in gut microbiota and SCFA production in broilers.Anim Nutr2023;12:54-62 PMCID:PMC9684696
|
| [34] |
Liu X,Li Y.Fecal microbiota transplantation revealed the function of folic acid on reducing abdominal fat deposition in broiler chickens mediated by gut microbiota.Poult Sci2024;103:103392 PMCID:PMC10792633
|
| [35] |
Nan S,Zhang X.Fermented grape seed meal promotes broiler growth and reduces abdominal fat deposition through intestinal microorganisms.Front Microbiol2022;13:994033 PMCID:PMC9589342
|
| [36] |
Dai H,Zhang Y.Dietary phytosterols supplementation improves the growth performance and decreases the abdominal fat of broiler chickens by regulating intestinal epithelial structure and microbiota.Anim Feed Sci Technol2023;305:115786
|
| [37] |
Zhang Y,Li J.Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes.Poult Sci2020;99:5827-37 PMCID:PMC7647821
|
| [38] |
Wu T,Fu Q.Effects of dietary supplementation of Anoectochilus roxburghii extract (ARE) on growth performance, abdominal fat deposition, meat quality, and gut microbiota in broilers.Poult Sci2023;102:102842 PMCID:PMC10404775
|
| [39] |
Xiao L,Qin L.Multi-omics reveal the effects and regulatory mechanism of dietary echinocystic acid supplementation on abdominal fat and liver steatosis in broiler chickens.Poult Sci2025;104:104981 PMCID:PMC11932685
|
| [40] |
Wang M,Wang C.Lactococcus G423 improve growth performance and lipid metabolism of broilers through modulating the gut microbiota and metabolites.Front Microbiol2024;15:1381756 PMCID:PMC11210191
|
| [41] |
Jing Y,Monson M.Multi-omics association reveals the effects of intestinal microbiome-host interactions on fat deposition in broilers.Front Microbiol2021;12:815538 PMCID:PMC8892104
|
| [42] |
Liu J,Zhou Y.Integrated omics analysis reveals differences in gut microbiota and gut-host metabolite profiles between obese and lean chickens.Poult Sci2022;101:102165 PMCID:PMC9523386
|
| [43] |
Lei J,Hou Q.Intestinal microbiota regulate certain meat quality parameters in chicken.Front Nutr2022;9:747705 PMCID:PMC9085416
|
| [44] |
Xiang H,Zeng D.Specific microbial taxa and functional capacity contribute to chicken abdominal fat deposition.Front Microbiol2021;12:643025 PMCID:PMC8010200
|
| [45] |
He J,Shen L.Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism.Int J Mol Sci2020;21:6356 PMCID:PMC7503625
|
| [46] |
Tolhurst G,Lam YS.Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2.Diabetes2012;61:364-71 PMCID:PMC3266401
|
| [47] |
den Besten G,Gerding A.Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation.Diabetes2015;64:2398-408
|
| [48] |
Xiao S,Chen M.Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism.J Ethnopharmacol2019;241:112032
|
| [49] |
Wang L,Huang Y,Shan T.Conjugated linoleic acids inhibit lipid deposition in subcutaneous adipose tissue and alter lipid profiles in serum of pigs.J Anim Sci2023;101:skad294 PMCID:PMC10629446
|
| [50] |
di Gregorio MC, Cautela J, Galantini L. Physiology and physical chemistry of bile acids.Int J Mol Sci2021;22:1780 PMCID:PMC7916809
|
| [51] |
Dong Z,Tang C,Kan Y.New insights into microbial bile salt hydrolases: from physiological roles to potential applications.Front Microbiol2025;16:1513541 PMCID:PMC11860951
|
| [52] |
Li R,Kuipers F.Gut microbiome and bile acids in obesity-related diseases.Best Pract Res Clin Endocrinol Metab2021;35:101493
|
| [53] |
Finn PD,Kohler J.Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice.Am J Physiol Gastrointest Liver Physiol2019;316:G412-24 PMCID:PMC6459286
|
| [54] |
Lun W,Guo X.Mechanism of action of the bile acid receptor TGR5 in obesity.Acta Pharm Sin B2024;14:468-91 PMCID:PMC10840437
|
| [55] |
Pols TW,Harach T.TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading.Cell Metab2011;14:747-57 PMCID:PMC3627293
|
| [56] |
Boutagy NE,Frisard MI.Metabolic endotoxemia with obesity: is it real and is it relevant?.Biochimie2016;124:11-20 PMCID:PMC4695328
|
| [57] |
Cani PD,Iglesias MA.Metabolic endotoxemia initiates obesity and insulin resistance.Diabetes2007;56:1761-72
|
| [58] |
Mohammad S.Role of metabolic endotoxemia in systemic inflammation and potential interventions.Front Immunol2020;11:594150 PMCID:PMC7829348
|
| [59] |
Ye D,Zhao Y,Van Berkel TJ.ATP-binding cassette transporters A1 and G1, HDL metabolism, cholesterol efflux, and inflammation: important targets for the treatment of atherosclerosis.Curr Drug Targets2011;12:647-60
|
| [60] |
Gojda J.Gut microbiota as the link between elevated BCAA serum levels and insulin resistance.Biomolecules2021;11:1414 PMCID:PMC8533624
|
| [61] |
Vanweert F,Phielix E.Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes.Nutr Diabetes2022;12:35 PMCID:PMC9356071
|
| [62] |
Daniel N,Tran TTT.Gut microbiota and fermentation-derived branched chain hydroxy acids mediate health benefits of yogurt consumption in obese mice.Nat Commun2022;13:1343 PMCID:PMC8924213
|
| [63] |
Segawa H,Miyamoto K,Endou H.Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity.J Biol Chem1999;274:19745-51
|
| [64] |
Wallace M,Roberts LS.Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues.Nat Chem Biol2018;14:1021-31 PMCID:PMC6245668
|
| [65] |
Green CR,Divakaruni AS.Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.Nat Chem Biol2016;12:15-21 PMCID:PMC4684771
|
| [66] |
Zaganjor E,Spinelli JB.SIRT4 is an early regulator of branched-chain amino acid catabolism that promotes adipogenesis.Cell Rep2021;36:109345 PMCID:PMC8320302
|
| [67] |
Yoneshiro T,Tajima K.BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.Nature2019;572:614-9 PMCID:PMC6715529
|
| [68] |
Ejtahed HS,Soroush AR,Siadat SD.Gut microbiota-derived metabolites in obesity: a systematic review.Biosci Microbiota Food Health2020;39:65-76 PMCID:PMC7392910
|
| [69] |
Mansoori S,Ng KK.Branched-chain amino acid metabolism: pathophysiological mechanism and therapeutic intervention in metabolic diseases.Obes Rev2025;26:e13856 PMCID:PMC11711082
|
| [70] |
Van Hul M, Cani PD. The gut microbiota in obesity and weight management: microbes as friends or foe?.Nat Rev Endocrinol2023;19:258-71
|
| [71] |
Nemoto S,Ohno H.Exploring body weight-influencing gut microbiota by elucidating the association with diet and host gene expression.Sci Rep2023;13:5593 PMCID:PMC10076326
|
| [72] |
Velloso LA,Saad MJ.TLR4 at the crossroads of nutrients, gut microbiota, and metabolic inflammation.Endocr Rev2015;36:245-71
|
| [73] |
Sanmiguel C,Mayer EA.Gut microbiome and obesity: a plausible explanation for obesity.Curr Obes Rep2015;4:250-61 PMCID:PMC4443745
|
| [74] |
Ecklu-Mensah G,Maseng MG.Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study.Nat Commun2023;14:5160 PMCID:PMC10055249
|
| [75] |
Visuthranukul C,Tepaamorndech S.Enhancing gut microbiota and microbial function with inulin supplementation in children with obesity.Int J Obes2024;48:1696-704 PMCID:PMC11584386
|
| [76] |
Slouha E,Farahbod K,Clunes LA.Type-2 diabetes mellitus and the gut microbiota: systematic review.Cureus2023;15:e49740 PMCID:PMC10757596
|
| [77] |
Zeng Y,Zhang Q.Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases.mBio2024;15:e0203223 PMCID:PMC10790698
|
| [78] |
Wu J,Fan H,Xiong Q.Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus.Front Endocrinol2023;14:1114424 PMCID:PMC10204722
|
| [79] |
Hernández-Montoliu L,Puig R.A specific gut microbiota signature is associated with an enhanced GLP-1 and GLP-2 secretion and improved metabolic control in patients with type 2 diabetes after metabolic Roux-en-Y gastric bypass.Front Endocrinol2023;14:1181744 PMCID:PMC10616869
|
| [80] |
Byndloss M,Duca F.The gut microbiota and diabetes: research, translation, and clinical applications - 2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum.Diabetes Care2024;47:1491-508 PMCID:PMC11362125
|
| [81] |
Cui X,Yang Y.Administration of selenomethionine in combination with serine benefits diabetes via gut microbiota.Front Microbiol2022;13:1007814 PMCID:PMC9597302
|
| [82] |
Su X,Liu J.Composition of gut microbiota and non-alcoholic fatty liver disease: a systematic review and meta-analysis.Obes Rev2024;25:e13646
|
| [83] |
Zai W,Liu H.Therapeutic opportunities of IL-22 in non-alcoholic fatty liver disease: from molecular mechanisms to clinical applications.Biomedicines2021;9:1912 PMCID:PMC8698419
|
| [84] |
Maestri M,Pompili M,Ponziani FR.Gut microbiota modulation in patients with non-alcoholic fatty liver disease: effects of current treatments and future strategies.Front Nutr2023;10:1110536 PMCID:PMC9978194
|
| [85] |
Pezzino S,Mazzone C.Gut microbiome in the progression of NAFLD, NASH and cirrhosis, and its connection with biotics: a bibliometric study using dimensions scientific research database.Biology2023;12:662 PMCID:PMC10215374
|
| [86] |
Liu J,Cai J,Li H.The contribution of the gut-liver axis to the immune signaling pathway of NAFLD.Front Immunol2022;13:968799 PMCID:PMC9471422
|
| [87] |
Alveirinho M,Faleiro ML.Role of gut microbiota in metabolic syndrome: a review of recent evidence.Porto Biomed J2020;5:e105 PMCID:PMC7721214
|
| [88] |
Qureshi W,Rather MY.New therapy for metabolic syndrome: gut microbiome supplementation.World J Diabetes2024;15:1833-6 PMCID:PMC11372646
|
| [89] |
Li J,Wang Y.Gut microbiota dysbiosis contributes to the development of hypertension.Microbiome2017;5:14 PMCID:PMC5286796
|
| [90] |
Nakai M,Stevens BR.Essential hypertension is associated with changes in gut microbial metabolic pathways: a multisite analysis of ambulatory blood pressure.Hypertension2021;78:804-15
|
| [91] |
Li C,Ren H.Unraveling the gut microbiota’s role in PCOS: a new frontier in metabolic health.Front Endocrinol2025;16:1529703 PMCID:PMC11958223
|
| [92] |
Senthilkumar H.Gut microbiota: a hidden player in polycystic ovary syndrome.J Transl Med2025;23:443 PMCID:PMC11998441
|
| [93] |
da Silva TR,Rampelotto PH.Gut microbiota and gut-derived metabolites are altered and associated with dietary intake in women with polycystic ovary syndrome.J Ovarian Res2024;17:232 PMCID:PMC11583432
|