Assessment of absolute abundance in mother-infant gut microbiome using marine-sourced bacterial DNA spike-in and comparison with conventional quantification methods

Shuo Wang , David Healy , Dhrati Patangia , Shona Uniacke-Lowe , Elena Kamilari , Iwona M. Kozak , Bo Yang , Eugene M. Dempsey , Catherine Stanton , R. Paul Ross

Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (2) : 23

PDF
Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (2) :23 DOI: 10.20517/mrr.2024.94
Original Article

Assessment of absolute abundance in mother-infant gut microbiome using marine-sourced bacterial DNA spike-in and comparison with conventional quantification methods

Author information +
History +
PDF

Abstract

Aim: To evaluate the effectiveness of marine-sourced bacterial DNA spike-in quantification for determining absolute microbial abundance in the gut microbiome of mother-infant pairs and to compare this method with conventional quantification techniques.

Methods: We conducted a pilot study involving six mother-infant pairs, applying a DNA spike-in quantification method using bacterial DNA from Pseudoalteromonas sp. APC 3896 and Planococcus sp. APC 3900, isolated from deep-sea fish. We compared our approach with established absolute quantification methods - flow cytometry, total DNA measurement, quantitative PCR (qPCR), and culture-based plate count - to evaluate microbial load and taxonomic composition across mother-infant samples.

Results: Our spike-in method accurately estimated microbial loads, producing results consistent with qPCR and total DNA quantification. We observed that mothers exhibited higher total bacterial loads than infants by approximately half a log, while the abundance of Bifidobacterium was comparable in both groups. The spike-in method revealed significant differences in taxonomic composition, highlighting the impact of absolute quantification on microbiome analysis outcomes. Importantly, the method did not alter alpha diversity measures but slightly affected beta diversity analysis, reflecting more precise inter-group differences.

Conclusion: Marine-sourced bacterial DNA spike-in offers a reliable, scalable, and accurate approach for absolute microbiome quantification. This method enhances microbiome analysis by addressing biases inherent in relative abundance measures, providing a deeper understanding of microbial dynamics in mother-infant gut microbiomes.

Keywords

Spike-in / absolute quantification / marine-sourced bacteria

Cite this article

Download citation ▾
Shuo Wang, David Healy, Dhrati Patangia, Shona Uniacke-Lowe, Elena Kamilari, Iwona M. Kozak, Bo Yang, Eugene M. Dempsey, Catherine Stanton, R. Paul Ross. Assessment of absolute abundance in mother-infant gut microbiome using marine-sourced bacterial DNA spike-in and comparison with conventional quantification methods. Microbiome Research Reports, 2025, 4(2): 23 DOI:10.20517/mrr.2024.94

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Roche KE.The accuracy of absolute differential abundance analysis from relative count data.PLoS Comput Biol2022;18:e1010284 PMCID:PMC9302745

[2]

Knight R,Taylor BC.Best practices for analysing microbiomes.Nat Rev Microbiol2018;16:410-22

[3]

Gloor GB,Pawlowsky-Glahn V.Microbiome datasets are compositional: and this is not optional.Front Microbiol2017;8:2224 PMCID:PMC5695134

[4]

Weiss S,Peddada S.Normalization and microbial differential abundance strategies depend upon data characteristics.Microbiome2017;5:27 PMCID:PMC5335496

[5]

Hawinkel S,Bijnens L.A broken promise: microbiome differential abundance methods do not control the false discovery rate.Brief Bioinform2019;20:210-21

[6]

Vandeputte D,D'hoe K.Quantitative microbiome profiling links gut community variation to microbial load.Nature2017;551:507-11

[7]

Jian C,Yki-Järvinen H,Korpela K.Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling.PLoS One2020;15:e0227285 PMCID:PMC6961887

[8]

Lou J,Wang H,Xu J.Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification.PeerJ2018;6:e4514 PMCID:PMC5857175

[9]

Kleyer H,Or D.Resolving species level changes in a representative soil bacterial community using microfluidic quantitative PCR.Front Microbiol2017;8:2017 PMCID:PMC5661172

[10]

Nishijima S,Aasmets O.Fecal microbial load is a major determinant of gut microbiome variation and a confounder for disease associations.Cell2024;188:222-36

[11]

Contijoch EJ,Yang C.Gut microbiota density influences host physiology and is shaped by host and microbial factors.Elife2019;8

[12]

Korpela K,Moltu SJ.Intestinal microbiota development and gestational age in preterm neonates.Sci Rep2018;8:2453 PMCID:PMC5802739

[13]

Roussel C,Leriche F.Comparison of conventional plating, PMA-qPCR, and flow cytometry for the determination of viable enterotoxigenic Escherichia coli along a gastrointestinal in vitro model.Appl Microbiol Biotechnol2018;102:9793-802

[14]

Ou F,Swift S.Absolute bacterial cell enumeration using flow cytometry.J Appl Microbiol2017;123:464-77

[15]

Brankatschk R,Zeyer J.Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples.Appl Environ Microbiol2012;78:4481-9 PMCID:PMC3370567

[16]

Stämmler F,Hiergeist A.Adjusting microbiome profiles for differences in microbial load by spike-in bacteria.Microbiome2016;4:28 PMCID:PMC4915049

[17]

Rao C,Bainter W,Martin CR.Multi-kingdom ecological drivers of microbiota assembly in preterm infants.Nature2021;591:633-8 PMCID:PMC7990694

[18]

Tourlousse DM,Ohashi A,Noda N.Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing.Nucleic Acids Res2017;45:e23 PMCID:PMC5389483

[19]

Zaramela LS,Moyne O,Zengler K.synDNA-a Synthetic DNA Spike-in method for absolute quantification of shotgun metagenomic sequencing.mSystems2022;7:e0044722 PMCID:PMC9765022

[20]

Camacho-Sanchez M.A new spike-in-based method for quantitative metabarcoding of soil fungi and bacteria.Int Microbiol2024;27:719-30

[21]

Warda AK,Forssten SD.Cross-sectional observational study protocol: missing microbes in infants born by caesarean section (MiMIC): antenatal antibiotics and mode of delivery.BMJ Open2022;12:e064398 PMCID:PMC9639109

[22]

Lopez-Siles M,Duncan SH,Garcia-Gil LJ.Cultured representatives of two major phylogroups of human colonic faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth.Appl Environ Microbiol2012;78:420-8 PMCID:PMC3255724

[23]

Uniacke-Lowe S,Hill C.Bioactivity screening and genomic analysis reveals deep-sea fish microbiome isolates as sources of novel antimicrobials.Mar Drugs2023;21:444 PMCID:PMC10456417

[24]

Vynne NG,Nielsen KF.Bioactivity, chemical profiling, and 16S rRNA-based phylogeny of Pseudoalteromonas strains collected on a global research cruise.Mar Biotechnol (NY)2011;13:1062-73

[25]

Yoon JH,Kang KH,Park YH.Planococcus maritimus sp. nov., isolated from sea water of a tidal flat in Korea.Int J Syst Evol Microbiol2003;53:2013-7

[26]

Stoddard SF,Hein R,Schmidt TM.rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development.Nucleic Acids Res2015;43:D593-8 PMCID:PMC4383981

[27]

Yu Z.Improved extraction of PCR-quality community DNA from digesta and fecal samples.Biotechniques2004;36:808-12

[28]

Clifford RJ,Prestwood J.Detection of bacterial 16S rRNA and identification of four clinically important bacteria by real-time PCR.PLoS One2012;7:e48558 PMCID:PMC3490953

[29]

Delroisse JM,Parmentier I,Vandenbol M.Quantification of bifidobacterium spp. and lactobacillus spp. in rat fecal samples by real-time PCR.Microbiol Res2008;163:663-70

[30]

Callahan BJ,Rosen MJ,Johnson AJ.DADA2: High-resolution sample inference from Illumina amplicon data.Nat Methods2016;13:581-3 PMCID:PMC4927377

[31]

Quast C,Yilmaz P.The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.Nucleic Acids Res2013;41:D590-6 PMCID:PMC3531112

[32]

Ding M,Yu R.Shared and non-shared sIgA-coated and -uncoated bacteria in intestine of mother-infant pairs.Int J Mol Sci2022;23:9873 PMCID:PMC9456154

[33]

Yap BW.Comparisons of various types of normality tests.J Stat Comput Simul2011;81:2141-55

[34]

Corder GW. Nonparametric statistics: A step-by-step approach. 2nd ed. Hoboken, NJ: John, Wiley and Sons; 2014.

[35]

Ding M,Liu F.Lactation time influences the composition of Bifidobacterium and Lactobacillus at species level in human breast milk.Benef Microbes2022;13:319-30

[36]

Bishara AJ.Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches.Psychol Methods2012;17:399-417

[37]

Healy DB,Patangia D,Ross RP,Dempsey EM.Late-onset sepsis treatment in very preterm infants alters longitudinal microbiome trajectory with lower abundance of Bifidobacterium despite probiotic supplementation.Gut Microbes2025;

[38]

Thermo Fisher Scientific. LIVE/DEAD® BacLighTM Bacterial Viability and Counting Kit (L34856): Product Information Sheet. 2004. Available from: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp34856.pdf

[39]

Brando B,Janossy G.European Working Group on Clinical Cell Analysis (EWGCCA)Cytofluorometric methods for assessing absolute numbers of cell subsets in blood.Cytometry2000;42:327-46

[40]

Wulff S,Vandergaw A. Guide to flow cytometry. Glostrup: Dako Cytomation; 2006.

[41]

Kennedy NA,Berry SH.UK IBD Genetics ConsortiumThe impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing.PLoS One2014;9:e88982 PMCID:PMC3933346

[42]

Han Z,Lv A.Biases from different DNA extraction methods in intestine microbiome research based on 16S rDNA sequencing: a case in the koi carp, Cyprinus carpio var. Koi.Microbiologyopen2019;8:e00626 PMCID:PMC6341036

[43]

Yuan S,Ravel J,Forney LJ.Evaluation of methods for the extraction and purification of DNA from the human microbiome.PLoS One2012;7:e33865 PMCID:PMC3311548

[44]

Bruin OM, Birnboim HC. A method for assessing efficiency of bacterial cell disruption and DNA release.BMC Microbiol2016;16:197 PMCID:PMC5002184

[45]

Costea PI,Sunagawa S.Towards standards for human fecal sample processing in metagenomic studies.Nat Biotechnol2017;35:1069-76

[46]

Gao Y.Accounting for 16S rRNA copy number prediction uncertainty and its implications in bacterial diversity analyses.ISME Commun2023;3:59 PMCID:PMC10257666

[47]

Louca S,Parfrey LW.Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem.Microbiome2018;6:41 PMCID:PMC5828423

[48]

Peterson D,Rowland S,Klepac-Ceraj V.RESONANCE ConsortiumComparative analysis of 16S rRNA gene and metagenome sequencing in pediatric gut microbiomes.Front Microbiol2021;12:670336 PMCID:PMC8320171

[49]

Dopheide A,Buckley TR,Newcomb RD.Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity.Methods Ecol Evol2019;10:120-33

[50]

Haro C,Metsis M,Landa BB.Evaluation of established methods for DNA extraction and primer pairs targeting 16S rRNA gene for bacterial microbiota profiling of olive xylem sap.Front Plant Sci2021;12:640829 PMCID:PMC7994608

[51]

Shah N,Doak TG.Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics.Pac Symp Biocomput2011:165-76.

[52]

Han D,Li R.Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing.J Adv Res2020;26:111-21 PMCID:PMC7584675

[53]

Li J,Li N, X.Antibiotic susceptibility and biofilm-forming ability of Veillonella strains.Anaerobe2022;78:102667

[54]

McInnes RS,Lamberte LE.Horizontal transfer of antibiotic resistance genes in the human gut microbiome.Curr Opin Microbiol2020;53:35-43

[55]

Iredell J,Tagg K.Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications.BMJ2016;352:h6420

[56]

MacKenzie FM.The post-antibiotic effect.J Antimicrob Chemother1993;32:519-37

[57]

Keasey CB.Social participation as a factor in the moral development of preadolescents.Dev Psychol1971;5:216-20

[58]

Fu X,Yuan Q.Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia.Environ Int2020;138:105664

[59]

Fu X,Yuan Q.Association between indoor microbiome exposure and sick building syndrome (SBS) in junior high schools of Johor Bahru, Malaysia.Sci Total Environ2021;753:141904

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/