Ex vivo study on prebiotic & choline combination to modulate gut bacteria, enhance choline bioavailability, and reduce TMA production

Ying Qi Goh , Guoxiang Cheam , Mingyue Yeong , Nidhi Bhayana , Abigail Thomson , Jingtao Zhang , Jia Xu , Patricia Conway , Smeeta Shrestha , Yulan Wang

Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (2) : 21

PDF
Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (2) :21 DOI: 10.20517/mrr.2024.90
Original Article

Ex vivo study on prebiotic & choline combination to modulate gut bacteria, enhance choline bioavailability, and reduce TMA production

Author information +
History +
PDF

Abstract

Aim: Choline is a universal methyl group donor, playing an essential role in DNA methylation, signaling pathways, and the transport and metabolism of lipids. The primary source of choline intake is diet, and chronic deficiency has been associated with dementia, cardiovascular disease, and liver disease. Choline bioavailability can be diminished by gut microbes that express choline trimethylamine-lyase (cutC), an enzyme that converts choline into trimethylamine (TMA), a precursor for TMA N-oxide (TMAO), which is associated with an increased risk of cardiovascular diseases. Gut microbiota modulation can be achieved by prebiotics such as galactooligosaccharides, inulin, and fructooligosaccharides. The aim of our study is to use choline with prebiotics to modulate the gut microbiota to enhance choline bioavailability and minimize TMA production.

Methods: We employed an ex vivo microcosm system consisting of healthy human stool samples with choline and different prebiotics and measured TMA and choline levels by targeted metabolomics. Shotgun metagenomic profiling was also performed to investigate alternation in gut microbiota composition during choline and prebiotic interventions.

Results: Our study showed that choline to TMA conversion is dependent on a choline derivative and supplementing galactooligosaccharides (GOS) reduces this conversion. Choline to TMA conversion was associated with enriched microbiota from the genus Dialister, whereas GOS supplementation led to an increase in Blautia and a reduction in Clostridia populations. Loss of Clostridia also reduced a subset of Clostridium species, Clostridium citroniae, known to encode the cutC gene. The abundance of Dialister enhanced the chorismate biosynthesis pathway, while a reduction in Clostridium supported tryptophan and methionine pathways.

Conclusion: This study is the first to identify the combination of choline and GOS supplementation as a potential strategy to modulate gut microbiota and its metabolites in order to improve disease etiology.

Keywords

Choline / trimethylamine lyase / prebiotics / gut / Clostridium / chorismate / tryptophan

Cite this article

Download citation ▾
Ying Qi Goh, Guoxiang Cheam, Mingyue Yeong, Nidhi Bhayana, Abigail Thomson, Jingtao Zhang, Jia Xu, Patricia Conway, Smeeta Shrestha, Yulan Wang. Ex vivo study on prebiotic & choline combination to modulate gut bacteria, enhance choline bioavailability, and reduce TMA production. Microbiome Research Reports, 2025, 4(2): 21 DOI:10.20517/mrr.2024.90

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pinotti L,Dell’Orto V.Comparative mammalian choline metabolism with emphasis on the high-yielding dairy cow.Nutr Res Rev2002;15:315-32

[2]

Zeisel SH.Choline and human nutrition.Annu Rev Nutr1994;14:269-96

[3]

Zeisel SH.Choline: an essential nutrient for public health.Nutr Rev2009;67:615-23 PMCID:PMC2782876

[4]

Zuk E,Chmurzynska A.Dietary choline intake in European and non-european populations: current status and future trends-a narrative review.Nutr J2024;23:68 PMCID:PMC11212380

[5]

Chrysant SG.The current status of homocysteine as a risk factor for cardiovascular disease: a mini review.Expert Rev Cardiovasc Ther2018;16:559-65

[6]

Zeisel SH.Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis.Clin Chem Lab Med2013;51:467-75 PMCID:PMC3624053

[7]

Sherriff JL,Properzi C,Adams LA.Choline, Its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes.Adv Nutr2016;7:5-13 PMCID:PMC4717871

[8]

Simó C.Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development.Food Funct2020;11:6745-76

[9]

Tremaroli V.Functional interactions between the gut microbiota and host metabolism.Nature2012;489:242-9

[10]

Romano KA,Amador-Noguez D.Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.mBio2015;6:e02481 PMCID:PMC4453578

[11]

Tang WH,Kennedy DJ.Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease.Circ Res2015;116:448-55 PMCID:PMC4312512

[12]

Bae S,Neuhouser ML.Plasma choline metabolites and colorectal cancer risk in the women’s health initiative observational study.Cancer Res2014;74:7442-52 PMCID:PMC4268282

[13]

Wang Z,Bennett BJ.Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.Nature2011;472:57-63 PMCID:PMC3086762

[14]

Roncal C,Orbe J.Trimethylamine-N-oxide (TMAO) predicts cardiovascular mortality in peripheral artery disease.Sci Rep2019;9:15580 PMCID:PMC6821861

[15]

Kalnins G,Grinberga S.Structure and function of CutC choline lyase from human microbiota bacterium klebsiella pneumoniae.J Biol Chem2015;290:21732-40 PMCID:PMC4571895

[16]

Rath S,Pieper DH.Uncovering the trimethylamine-producing bacteria of the human gut microbiota.Microbiome2017;5:54 PMCID:PMC5433236

[17]

Arias N,Allison J.The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases.Nutrients2020;12:2340 PMCID:PMC7468957

[18]

Cai YY,Lao X.Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis.NPJ Biofilms Microbiomes2022;8:11 PMCID:PMC8913745

[19]

Cho CE,Bunnell ML.Effect of choline forms and gut microbiota composition on trimethylamine-N-oxide response in healthy men.Nutrients2020;12:2220 PMCID:PMC7468900

[20]

Koropatkin NM,Martens EC.How glycan metabolism shapes the human gut microbiota.Nat Rev Microbiol2012;10:323-35 PMCID:PMC4005082

[21]

Li Q,Zhang M,Liu R.Potential correlation between dietary fiber-suppressed microbial conversion of choline to trimethylamine and formation of methylglyoxal.J Agric Food Chem2019;67:13247-57

[22]

Macfarlane GT,Macfarlane S.Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics.J Appl Microbiol2008;104:305-44

[23]

Wilkhoo HS,Islam AW,Shaikh AA.Comparison of short-term and long-term effects of peroral L-carnitine intake: clinical implications of elevated TMAO levels in cardiovascular complications.Explor Cardiol

[24]

Gatarek P.Trimethylamine N-oxide (TMAO) in human health.EXCLI J2021;20:301-19

[25]

Craciun S.Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.Proc Natl Acad Sci U S A2012;109:21307-12 PMCID:PMC3535645

[26]

Simons A. FastQC: A quality control tool for high throughput sequence data. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Last accessed on 24 Apr 2025]

[27]

Institute DJG. BBDuk: Filters, trims, or masks reads with kmer matches to an artifact/contaminant file. Available from: https://manpages.ubuntu.com/manpages/focal/man1/bbduk.sh.1.html

[28]

Langmead B.Fast gapped-read alignment with Bowtie 2.Nat Methods2012;9:357-9 PMCID:PMC3322381

[29]

Blanco-Míguez A,Cumbo F.Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4.Nat Biotechnol2023;41:1633-44 PMCID:PMC10635831

[30]

Beghini F,Blanco-Míguez A.Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3.Elife2021;10 PMCID:PMC8096432

[31]

Mallick H,McIver LJ.Multivariable association discovery in population-scale meta-omics studies.PLoS Comput Biol2021;17:e1009442 PMCID:PMC8714082

[32]

Team RC. R: A language and environment for statistical computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2023. Available from: https://www.r-project.org/ [Last accessed on 24 Apr 2025]

[33]

Dhariwal A,Habib S,Agellon LB.MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data.Nucleic Acids Res2017;45:W180-8 PMCID:PMC5570177

[34]

Peschel S,von Mutius E,Depner M.NetCoMi: network construction and comparison for microbiome data in R.Brief Bioinform2021;22

[35]

Sanders LM.Choline: dietary requirements and role in brain development.Nutr Today2007;42:181-6 PMCID:PMC2518394

[36]

Obeid R.Choline - a scoping review for nordic nutrition recommendations 2023.Food Nutr Res2023;67 PMCID:PMC10770654

[37]

Ambrogi V,Mac Sharry J.Bifidobacterial β-galactosidase-mediated production of galacto-oligosaccharides: structural and preliminary functional assessments.Front Microbiol2021;12:750635 PMCID:PMC8581567

[38]

Aguilera M,Brutus A,Simon G.Aga1, the first alpha-galactosidase from the human bacteria ruminococcus gnavus E1, efficiently transcribed in gut conditions.Res Microbiol2012;163:14-21

[39]

Mei Z,Li D.Biological activity of galacto-oligosaccharides: a review.Front Microbiol2022;13:993052 PMCID:PMC9485631

[40]

Farthing MJ.Bugs and the gut: an unstable marriage.Best Pract Res Clin Gastroenterol2004;18:233-9

[41]

Horigome A,Yoshida K,Odamaki T.2’-fucosyllactose increases the abundance of blautia in the presence of extracellular fucosidase-possessing bacteria.Front Microbiol2022;13:913624 PMCID:PMC9201481

[42]

Wiese M,Smits WK.2’-Fucosyllactose inhibits proliferation of clostridioides difficile ATCC 43599 in the CDi-screen, an in vitro model simulating clostridioides difficile infection.Front Cell Infect Microbiol2022;12:991150 PMCID:PMC9650113

[43]

Fusco W,Cintoni M.Short-chain fatty-acid-producing bacteria: key components of the human gut microbiota.Nutrients2023;15:2211 PMCID:PMC10180739

[44]

Guo P,Ma X.Clostridium species as probiotics: potentials and challenges.J Anim Sci Biotechnol2020;11:24 PMCID:PMC7031906

[45]

Ducker GS.One-carbon metabolism in health and disease.Cell Metab2017;25:27-42 PMCID:PMC5353360

[46]

Dosselaere F.A metabolic node in action: chorismate-utilizing enzymes in microorganisms.Crit Rev Microbiol2001;27:75-131

[47]

Gao J,Liu H.Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism.Front Cell Infect Microbiol2018;8:13 PMCID:PMC5808205

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/