Host-dependent alteration of the gut microbiota: the role of luminal microRNAs

Céline Cuinat , Jiali Pan , Elena M. Comelli

Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (1) : 15

PDF
Microbiome Research Reports ›› 2025, Vol. 4 ›› Issue (1) :15 DOI: 10.20517/mrr.2024.46
Review

Host-dependent alteration of the gut microbiota: the role of luminal microRNAs

Author information +
History +
PDF

Abstract

MicroRNAs (miRNAs) are short, non-coding RNAs that play gene expression regulatory roles in eukaryotes. MiRNAs are also released in body fluids, and in the intestine, they are found in the lumen and feces. Here, together with exogenous dietary-derived miRNAs, they constitute the fecal miRNome. Several miRNAs were identified in the feces of healthy adults, including, as shown here, core miRNAs hsa-miR-21-5p and hsa-miR-1246. These miRNAs are important for intestinal homeostasis. Recent evidence suggests that miRNAs may interact with gut bacteria. This represents a new avenue to understand host-bacteria crosstalk in the gut and its role in health and disease. This review provides a comprehensive overview of current knowledge on fecal miRNAs, their representation across individuals, and their effects on the gut microbiota. It also discusses existing evidence on potential mechanisms of uptake and interaction with bacterial genomes, drawing from knowledge of prokaryotic small RNAs (sRNAs) regulation of gene expression. Finally, we review in silico and experimental approaches for profiling miRNA-mRNA interactions in bacterial species, highlighting challenges in target validation. This work emphasizes the need for further research into host miRNA-bacterial interactions to better understand their regulatory roles in the gut ecosystem and support their exploitation for disease prevention and treatment.

Keywords

MicroRNA / gut microbiota / regulatory RNA / intestine / fecal / miRNome / probiotics / dietary microRNA

Cite this article

Download citation ▾
Céline Cuinat, Jiali Pan, Elena M. Comelli. Host-dependent alteration of the gut microbiota: the role of luminal microRNAs. Microbiome Research Reports, 2025, 4(1): 15 DOI:10.20517/mrr.2024.46

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Krautkramer KA,Bäckhed F.Gut microbial metabolites as multi-kingdom intermediates.Nat Rev Microbiol2021;19:77-94

[2]

Hagi T,Nijsse B.The effect of bile acids on the growth and global gene expression profiles in Akkermansia muciniphila.Appl Microbiol Biotechnol2020;104:10641-53 PMCID:PMC7671984

[3]

Salzman NH.Paneth cell defensins and the regulation of the microbiome: détente at mucosal surfaces.Gut Microbes2010;1:401-6 PMCID:PMC3056107

[4]

Tomaro-Duchesneau C,Roeth D.Discovery of a bacterial peptide as a modulator of GLP-1 and metabolic disease.Sci Rep2020;10:4922 PMCID:PMC7080827

[5]

Org E,Parks BW.Sex differences and hormonal effects on gut microbiota composition in mice.Gut Microbes2016;7:313-22 PMCID:PMC4988450

[6]

Frankenfeld CL,Wähälä K.Obesity prevalence in relation to gut microbial environments capable of producing equol or O-desmethylangolensin from the isoflavone daidzein.Eur J Clin Nutr2014;68:526-30 PMCID:PMC4189015

[7]

Liu S,Rezende RM.The host shapes the gut microbiota via fecal microRNA.Cell Host Microbe2016;19:32-43 PMCID:PMC4847146

[8]

Jonas S.Towards a molecular understanding of microRNA-mediated gene silencing.Nat Rev Genet2015;16:421-33

[9]

Kozomara A,Griffiths-Jones S.miRBase: from microRNA sequences to function.Nucleic Acids Res2019;47:D155-62 PMCID:PMC6323917

[10]

Moran Y,Praher D.The evolutionary origin of plant and animal microRNAs.Nat Ecol Evol2017;1:27 PMCID:PMC5435108

[11]

Friedman RC,Burge CB.Most mammalian mRNAs are conserved targets of microRNAs.Genome Res2009;19:92-105 PMCID:PMC2612969

[12]

Layton E,Griffiths-Jones S,Roberts IS.Regulatory RNAs: a universal language for inter-domain communication.Int J Mol Sci2020;21:8919 PMCID:PMC7727864

[13]

McKenna LB,Vourekas A.MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function.Gastroenterology2010;139:1654-64, e1 PMCID:PMC3156097

[14]

Biton M,Slyper M.Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk.Nat Immunol2011;12:239-46

[15]

Gulyaeva LF.Regulatory mechanisms of microRNA expression.J Transl Med2016;14:143 PMCID:PMC4873990

[16]

Dalmasso G,Yan Y.Microbiota modulate host gene expression via microRNAs.PLoS One2011;6:e19293 PMCID:PMC3084815

[17]

Singh N,Waldron L,Jurisica I.The murine caecal microRNA signature depends on the presence of the endogenous microbiota.Int J Biol Sci2012;8:171-86 PMCID:PMC3248702

[18]

Kaakoush NO,Man SM.Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus.Infect Immun2015;83:832-45 PMCID:PMC4294260

[19]

Schulte LN,Mollenkopf HJ,Vogel J.Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family.EMBO J2011;30:1977-89 PMCID:PMC3098495

[20]

Wen B,Taibi A,Jurisica I.Citrobacter rodentium alters the mouse colonic miRNome.Genes Immun2019;20:207-13

[21]

Taibi A,Tremblay J.Intestinal microRNAs and bacterial taxa in juvenile mice are associated, modifiable by allochthonous lactobacilli, and affect postnatal maturation.mSystems2023;8:e0043123 PMCID:PMC10469672

[22]

Yang Y,Peng J.Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21.Gastroenterology2017;152:851-66.e24 PMCID:PMC5555435

[23]

Anzola A,Gámez-Belmonte R.miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli.Sci Rep2018;8:17350 PMCID:PMC6255912

[24]

Hu S,Chang EB,Raufman JP.Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells.Mol Cancer2015;14:180 PMCID:PMC4604099

[25]

Dalmasso G,Delmas J,Bonnet R.The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment.Gut Microbes2014;5:675-80 PMCID:PMC4615906

[26]

Valadi H,Bossios A,Lee JJ.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat Cell Biol2007;9:654-9

[27]

Hergenreider E,Tréguer K.Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs.Nat Cell Biol2012;14:249-56

[28]

Chen X,Ma L.Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases.Cell Res2008;18:997-1006

[29]

Melkonyan HS,Meyer E.Transrenal nucleic acids: from proof of principle to clinical tests.Ann N Y Acad Sci2008;1137:73-81

[30]

Michael A,Yuen PS.Exosomes from human saliva as a source of microRNA biomarkers.Oral Dis2010;16:34-8 PMCID:PMC2844919

[31]

Ahmed FE,Vos PW.Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue.Cancer Genomics Proteomics2009;6:281-95

[32]

Wu CW,Dong YJ.Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps.Gut2012;61:739-45

[33]

Francavilla A,Piaggeschi G.Faecal miRNA profiles associated with age, sex, BMI, and lifestyle habits in healthy individuals.Sci Rep2021;11:20645 PMCID:PMC8526833

[34]

Casado-Bedmar M.MicroRNA and gut microbiota: tiny but mighty-novel insights into their cross-talk in inflammatory bowel disease pathogenesis and therapeutics.J Crohns Colitis2022;16:992-1005 PMCID:PMC9282881

[35]

Wohnhaas CT,Rolser M.Fecal microRNAs show promise as noninvasive Crohn’s disease biomarkers.Crohns Colitis 3602020;2:otaa003 PMCID:PMC7291945

[36]

Link A,Goel A,Malfertheiner P.Feasibility of fecal microRNAs as novel biomarkers for pancreatic cancer.PLoS One2012;7:e42933 PMCID:PMC3414456

[37]

Pardini B,Tarallo S.A fecal microRNA signature by small RNA sequencing accurately distinguishes colorectal cancers: results from a multicenter study.Gastroenterology2023;165:582-99.e8

[38]

Schepeler T,Ostenfeld MS.Diagnostic and prognostic microRNAs in stage II colon cancer.Cancer Res2008;68:6416-24

[39]

Viennois E,Tahsin A.Host-derived fecal microRNAs can indicate gut microbiota healthiness and ability to induce inflammation.Theranostics2019;9:4542-57 PMCID:PMC6599659

[40]

Jayaswal V,Ma DD.Identification of microRNA-mRNA modules using microarray data.BMC Genomics2011;12:138 PMCID:PMC3065435

[41]

Nath N.Machine learning based methods and best practices of microRNA-target prediction and validation. In: Schmitz U, Wolkenhauer O, Vera-González J, editors. Systems biology of microRNAs in cancer. Cham: Springer International Publishing; 2022. pp. 109-31.

[42]

Tokar T,Rossos AEM.mirDIP 4.1 - integrative database of human microRNA target predictions.Nucleic Acids Res2018;46:D360-70 PMCID:PMC5753284

[43]

Bartel DP.MicroRNAs: genomics, biogenesis, mechanism, and function.Cell2004;116:281-97

[44]

Winter J.Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization.RNA Biol2011;8:1149-57

[45]

Medley JC,Zinovyeva AY.microRNA strand selection: unwinding the rules.Wiley Interdiscip Rev RNA2021;12:e1627 PMCID:PMC8047885

[46]

Kim H,Yu S.A mechanism for microRNA arm switching regulated by uridylation.Mol Cell2020;78:1224-36.e5

[47]

Ge Y,Nikolova M,Fuchs E.Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21* in SCC progression.Nat Cell Biol2016;18:111-21 PMCID:PMC5333577

[48]

Song L,Hua S.miR-144-5p enhances the radiosensitivity of non-small-cell lung cancer cells via targeting ATF2.Biomed Res Int2018;2018:5109497 PMCID:PMC5925000

[49]

Bartel DP.MicroRNAs: target recognition and regulatory functions.Cell2009;136:215-33 PMCID:PMC3794896

[50]

Lewis BP,Jones-Rhoades MW,Burge CB.Prediction of mammalian microRNA targets.Cell2003;115:787-98

[51]

Zhang K,Cai Z.A novel class of microRNA-recognition elements that function only within open reading frames.Nat Struct Mol Biol2018;25:1019-27 PMCID:PMC6219929

[52]

Ørom UA,Lund AH.MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation.Mol Cell2008;30:460-71

[53]

Vasudevan S.AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2.Cell2007;128:1105-18 PMCID:PMC3430382

[54]

Chen TS,Lee MM,Lee CN.Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs.Nucleic Acids Res2010;38:215-24 PMCID:PMC2800221

[55]

Veziroglu EM.Characterizing extracellular vesicles and their diverse RNA contents.Front Genet2020;11:700 PMCID:PMC7379748

[56]

Vickers KC,Shoucri BM,Remaley AT.MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins.Nat Cell Biol2011;13:423-33 PMCID:PMC3074610

[57]

Wang K,Weber J,Galas DJ.Export of microRNAs and microRNA-protective protein by mammalian cells.Nucleic Acids Res2010;38:7248-59 PMCID:PMC2978372

[58]

Arroyo JD,Kroh EM.Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma.Proc Natl Acad Sci U S A2011;108:5003-8 PMCID:PMC3064324

[59]

Tian Y,Li Y.MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice.Gastroenterology2019;156:2281-96.e6

[60]

Montecalvo A,Shufesky WJ.Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes.Blood2012;119:756-66 PMCID:PMC3265200

[61]

Tabet F,Cuesta Torres LF.HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells.Nat Commun2014;5:3292 PMCID:PMC4189962

[62]

Aucher A,Davis DM.MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation.J Immunol2013;191:6250-60 PMCID:PMC3858238

[63]

Köberle V,Schmithals C.Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers.PLoS One2013;8:e75184 PMCID:PMC3779196

[64]

Coenen-Stass AML,Hanson B.Extracellular microRNAs exhibit sequence-dependent stability and cellular release kinetics.RNA Biol2019;16:696-706 PMCID:PMC6546368

[65]

Koga Y,Takahashi A.MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening.Cancer Prev Res2010;3:1435-42

[66]

Shen Q,Ma L.Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis.Gut Microbes2022;14:2128604 PMCID:PMC9542864

[67]

Koga Y,Moriya Y.Exosome can prevent RNase from degrading microRNA in feces.J Gastrointest Oncol2011;2:215-22 PMCID:PMC3397623

[68]

Chiang K,Zempleni J.Dietary MicroRNA Database (DMD): an archive database and analytic tool for food-borne microRNAs.PLoS One2015;10:e0128089 PMCID:PMC4451068

[69]

Luo Y,Wang X.Detection of dietetically absorbed maize-derived microRNAs in pigs.Sci Rep2017;7:645 PMCID:PMC5428504

[70]

Díez-Sainz E,Aranaz P,Lorente-Cebrián S.MicroRNAs from edible plants reach the human gastrointestinal tract and may act as potential regulators of gene expression.J Physiol Biochem2024;80:655-70 PMCID:PMC11502557

[71]

Philip A,Tate RJ.Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.Mol Nutr Food Res2015;59:1962-72

[72]

Rani P,Golla N,Onteru SK.Milk miRNAs encapsulated in exosomes are stable to human digestion and permeable to intestinal barrier in vitro.J Funct Foods2017;34:431-9

[73]

Teng Y,Sayed M.Plant-derived exosomal microRNAs shape the gut microbiota.Cell Host Microbe2018;24:637-52.e8 PMCID:PMC6746408

[74]

Wang J,Ren G.Plant microRNAs: biogenesis, homeostasis, and degradation.Front Plant Sci2019;10:360 PMCID:PMC6445950

[75]

de Mello AS, Ferguson BS, Shebs-Maurine EL, Giotto FM. MicroRNA biogenesis, gene regulation mechanisms, and availability in foods.Noncoding RNA2024;10:52 PMCID:PMC11510440

[76]

Weil PP,Hirsch CA.Uncovering the gastrointestinal passage, intestinal epithelial cellular uptake, and AGO2 loading of milk miRNAs in neonates using xenomiRs as tracers.Am J Clin Nutr2023;117:1195-210

[77]

Liang H,Fu Z.Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma.J Nutr Biochem2015;26:505-12

[78]

Zhang L,Chen X.Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA.Cell Res2012;22:107-26 PMCID:PMC3351925

[79]

Link J,Schanze D.Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract-proof-of-principle study.Mol Nutr Food Res2019;63:e1800076

[80]

Sun J,Yang X,Zhang G.Cytoprotective effects of galacto-oligosaccharides on colon epithelial cells via up-regulating miR-19b.Life Sci2019;231:116589

[81]

Lofft Z,Massara P.Cranberry proanthocyanidin and its microbial metabolite 3,4-dihydroxyphenylacetic acid, but not 3-(4-hydroxyphenyl)-propionic acid, partially reverse pro-inflammatory microRNA responses in human intestinal epithelial cells.Mol Nutr Food Res2022;66:e2100853

[82]

Tarallo S,De Filippis F.Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals.Gut2022;71:1302-14 PMCID:PMC9185830

[83]

Francavilla A,Pardini B.Gluten-free diet affects fecal small non-coding RNA profiles and microbiome composition in celiac disease supporting a host-gut microbiota crosstalk.Gut Microbes2023;15:2172955 PMCID:PMC9928459

[84]

Cho JH. Identification and analysis of microRNAs in Candida albicans. J Life Sci 2017;27:1494-9. https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002295643. (accessed 2025-02-18)

[85]

Saraiya AA.snoRNA, a novel precursor of microRNA in Giardia lamblia.PLoS Pathog2008;4:e1000224 PMCID:PMC2583053

[86]

Siddiq A,Balan B.A thermo-resistant and RNase-sensitive cargo from Giardia duodenalis extracellular vesicles modifies the behaviour of enterobacteria.J Extracell Biol2023;2:e109 PMCID:PMC11080815

[87]

Seashols-Williams S,Calloway C.High-throughput miRNA sequencing and identification of biomarkers for forensically relevant biological fluids.Electrophoresis2016;37:2780-8

[88]

Ferrero G,Tarallo S.Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals: description of the diverse and most represented species.Oncotarget2018;9:3097-111 PMCID:PMC5790449

[89]

Subramanian SL,Alexander R.Integration of extracellular RNA profiling data using metadata, biomedical ontologies and Linked Data technologies.J Extracell Vesicles2015;4:27497 PMCID:PMC4553261

[90]

Liu S,Moreira TG.Oral administration of miR-30d from feces of MS patients suppresses MS-like symptoms in mice by expanding Akkermansia muciniphila.Cell Host Microbe2019;26:779-94.e8 PMCID:PMC6948921

[91]

Tarallo S,Gallo G.Altered fecal small RNA profiles in colorectal cancer reflect gut microbiome composition in stool samples.mSystems2019;4:e00289-19 PMCID:PMC6749105

[92]

Thomas AM,Asnicar F.Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation.Nat Med2019;25:667-78 PMCID:PMC9533319

[93]

Chiappori F,Consiglio A.Analysis of faecal microbiota and small ncRNAs in autism: detection of miRNAs and piRNAs with possible implications in host-gut microbiota cross-talk.Nutrients2022;14:1340 PMCID:PMC9000903

[94]

Ambrozkiewicz F,Kulecka M.In search for interplay between stool microRNAs, microbiota and short chain fatty acids in Crohn’s disease - a preliminary study.BMC Gastroenterol2020;20:307 PMCID:PMC7507689

[95]

Gu Z.Complex heatmap visualization.Imeta2022;1:e43 PMCID:PMC10989952

[96]

Dhuppar S.miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease.Trends Immunol2022;43:917-31 PMCID:PMC9617792

[97]

Bott A,Lerrer S.miRNA-1246 induces pro-inflammatory responses in mesenchymal stem/stromal cells by regulating PKA and PP2A.Oncotarget2017;8:43897-914 PMCID:PMC5546423

[98]

Yau TO,Harriss EK,Polytarchou C.Faecal microRNAs as a non-invasive tool in the diagnosis of colonic adenomas and colorectal cancer: a meta-analysis.Sci Rep2019;9:9491 PMCID:PMC6603164

[99]

Bautista-Sánchez D,Pedroza-Torres A.The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics.Mol Ther Nucleic Acids2020;20:409-20 PMCID:PMC7118281

[100]

Wortelboer K,Winkelmeijer M.Fecal microbiota transplantation as tool to study the interrelation between microbiota composition and miRNA expression.Microbiol Res2022;257:126972

[101]

Santos AA,Ramiro RS.Host miRNA-21 promotes liver dysfunction by targeting small intestinal Lactobacillus in mice.Gut Microbes2020;12:1-18 PMCID:PMC7733982

[102]

He L,Liu Y,Li F.Fecal miR-142a-3p from dextran sulfate sodium-challenge recovered mice prevents colitis by promoting the growth of Lactobacillus reuteri.Mol Ther2022;30:388-99 PMCID:PMC8753372

[103]

Zhao L,Chen J.Colon specific delivery of miR-155 inhibitor alleviates estrogen deficiency related phenotype via microbiota remodeling.Drug Deliv2022;29:2610-20 PMCID:PMC9364735

[104]

Wang Y,Lv L.Faecal hsa-miR-7704 inhibits the growth and adhesion of Bifidobacterium longum by suppressing ProB and aggravates hepatic encephalopathy.NPJ Biofilms Microbiomes2024;10:13 PMCID:PMC10891095

[105]

Kumar A,Sundaram K.miR-375 prevents high-fat diet-induced insulin resistance and obesity by targeting the aryl hydrocarbon receptor and bacterial tryptophanase (tnaA) gene.Theranostics2021;11:4061-77 PMCID:PMC7977461

[106]

Xu Q,Zhang Y.Plant miRNA bol-miR159 regulates gut microbiota composition in mice: in vivo evidence of the crosstalk between plant miRNAs and intestinal microbes.J Agric Food Chem2023;71:16160-73

[107]

Wang X,Dong X.peu-MIR2916-p3-enriched garlic exosomes ameliorate murine colitis by reshaping gut microbiota, especially by boosting the anti-colitic Bacteroides thetaiotaomicron.Pharmacol Res2024;200:107071

[108]

Liu Y,Zhu WJ.In vitro effects of tartary buckwheat-derived nanovesicles on gut microbiota.J Agric Food Chem2022;70:2616-29

[109]

Xu Q,Zhang Y.Atypical plant miRNA cal-miR2911: robust stability against food digestion and specific promoting effect on Bifidobacterium in mice.J Agric Food Chem2024;72:4801-13

[110]

Culp EJ.Cross-feeding in the gut microbiome: ecology and mechanisms.Cell Host Microbe2023;31:485-99 PMCID:PMC10125260

[111]

Dempsey E.Lactobacillus spp. for gastrointestinal health: current and future perspectives.Front Immunol2022;13:840245 PMCID:PMC9019120

[112]

Work E,Vesk M.The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli.Ann N Y Acad Sci1966;133:438-49

[113]

Xiu L,Lin G,Huang L.Bacterial membrane vesicles: orchestrators of interkingdom interactions in microbial communities for environmental adaptation and pathogenic dynamics.Front Immunol2024;15:1371317 PMCID:PMC10991846

[114]

Lee J,Gho YS.Proteomic profiling of Gram-negative bacterial outer membrane vesicles: current perspectives.Proteomics Clin Appl2016;10:897-909

[115]

Crowley JT,LaRocca TJ,London E.Lipid exchange between Borrelia burgdorferi and host cells.PLoS Pathog2013;9:e1003109 PMCID:PMC3542181

[116]

Dorward DW,Judd RC.Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae.J Bacteriol1989;171:2499-505 PMCID:PMC209926

[117]

Sjöström AE,Uhlin BE.Membrane vesicle-mediated release of bacterial RNA.Sci Rep2015;5:15329 PMCID:PMC4612299

[118]

Dauros-Singorenko P,Phillips A.The functional RNA cargo of bacterial membrane vesicles.FEMS Microbiol Lett2018;365

[119]

Choi JW,Hong SH.Isolation and characterization of a microRNA-size secretable small RNA in Streptococcus sanguinis. Cell Biochem Biophys 2018;76:293-301.

[120]

Toyofuku M,Kaparakis-Liaskos M.Composition and functions of bacterial membrane vesicles.Nat Rev Microbiol2023;21:415-30

[121]

Sahr T,Rusniok C.Translocated Legionella pneumophila small RNAs mimic eukaryotic microRNAs targeting the host immune response.Nat Commun2022;13:762 PMCID:PMC8828724

[122]

Choi JW,Hong SH.Secretable small RNAs via outer membrane vesicles in periodontal pathogens.J Dent Res2017;96:458-66

[123]

Caruana JC.Bacterial membrane vesicles as mediators of microbe - microbe and microbe - host community interactions.Front Microbiol2020;11:432 PMCID:PMC7105600

[124]

Kim Y,Fenselau C.Extracellular vesicle proteomes reflect developmental phases of Bacillus subtilis.Clin Proteomics2016;13:6 PMCID:PMC4784445

[125]

Dean SN,Turner KB.Lactobacillus acidophilus membrane vesicles as a vehicle of bacteriocin delivery.Front Microbiol2020;11:710 PMCID:PMC7203471

[126]

Meyer KJ.Streptomyces extracellular vesicles are a broad and permissive antimicrobial packaging and delivery system.J Bacteriol2024;206:e0032523 PMCID:PMC10955852

[127]

Palsdottir H,Schaudinn C.Three-dimensional macromolecular organization of cryofixed Myxococcus xanthus biofilms as revealed by electron microscopic tomography.J Bacteriol2009;191:2077-82 PMCID:PMC2655519

[128]

Berleman J.The role of bacterial outer membrane vesicles for intra- and interspecies delivery.Environ Microbiol2013;15:347-54

[129]

Li C,Wang D.T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer.ISME J2022;16:500-10 PMCID:PMC8776902

[130]

Zhang X,Yang B.MicroRNA directly enhances mitochondrial translation during muscle differentiation.Cell2014;158:607-19 PMCID:PMC4119298

[131]

Luo L,Xiao Y.Mitochondrial-related microRNAs and their roles in cellular senescence.Front Physiol2023;14:1279548 PMCID:PMC10796628

[132]

Benz R.Prokaryotic and eukaryotic porins: comparison of structure and function. In: Villa TG, de Miguel Bouzas T, editors. Developmental biology in prokaryotes and lower eukaryotes. Cham: Springer International Publishing; 2021. pp. 367-98.

[133]

Walther DM,Rapaport D.The mitochondrial porin, VDAC, has retained the ability to be assembled in the bacterial outer membrane.Mol Biol Evol2010;27:887-95

[134]

Falchi FA,Carnelli C.Human PNPase causes RNA stabilization and accumulation of R-loops in the Escherichia coli model system.Sci Rep2023;13:11771 PMCID:PMC10362022

[135]

Inamine GS.ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport.J Bacteriol1995;177:3045-51 PMCID:PMC176991

[136]

Ahmed I,Henrickson A.Structure-function studies reveal ComEA contains an oligomerization domain essential for transformation in gram-positive bacteria.Nat Commun2022;13:7724 PMCID:PMC9747964

[137]

Argaman L,Vogel J.Novel small RNA-encoding genes in the intergenic regions of Escherichia coli.Curr Biol2001;11:941-50

[138]

Miyakoshi M,Vogel J.Regulatory small RNAs from the 3’ regions of bacterial mRNAs.Curr Opin Microbiol2015;24:132-9

[139]

Lalaouna D,Semsey S.A 3’ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise.Mol Cell2015;58:393-405

[140]

Kawano M,Miranda-Rios J.Detection of 5’- and 3’-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli.Nucleic Acids Res2005;33:1040-50 PMCID:PMC549416

[141]

Carrier MC,Massé E.Broadening the definition of bacterial small RNAs: characteristics and mechanisms of action.Annu Rev Microbiol2018;72:141-61

[142]

Lee HJ.Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing.FEMS Microbiol Lett2012;326:131-6

[143]

Kang SM,Lee Y,Lee HJ.Identification of microRNA-size, small RNAs in Escherichia coli. Curr Microbiol 2013;67:609-13.

[144]

Zhang Y,Hu Y.Porphyromonas gingivalis msRNA P.G_45033 induces amyloid-β production by enhancing glycolysis and histone lactylation in macrophages.Int Immunopharmacol2023;121:110468

[145]

Furuse Y,Saka HA.Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.PLoS One2014;9:e106434 PMCID:PMC4153649

[146]

Shine J.The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites.Proc Natl Acad Sci U S A1974;71:1342-6 PMCID:PMC388224

[147]

Bouvier M,Mika F,Vogel J.Small RNA binding to 5’ mRNA coding region inhibits translational initiation.Mol Cell2008;32:827-37

[148]

Pfeiffer V,Lucchini S,Vogel J.Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation.Nat Struct Mol Biol2009;16:840-6

[149]

Gorski SA,Doudna JA.RNA-based recognition and targeting: sowing the seeds of specificity.Nat Rev Mol Cell Biol2017;18:215-28

[150]

Brennan RG.Hfq structure, function and ligand binding.Curr Opin Microbiol2007;10:125-33

[151]

de Fernandez MT, Eoyang L, August JT. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA.Nature1968;219:588-90

[152]

Ikeda Y,Morita T.Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli.Mol Microbiol2011;79:419-32

[153]

Smirnov A,Drewry LL.Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA.EMBO J2017;36:1029-45 PMCID:PMC5391140

[154]

Sedlyarova N,Bharati BK.sRNA-mediated control of transcription termination in E. coli.Cell2016;167:111-21.e13 PMCID:PMC5040353

[155]

Bossi L,Guillemardet B,Figueroa-Bossi N.A role for Rho-dependent polarity in gene regulation by a noncoding small RNA.Genes Dev2012;26:1864-73 PMCID:PMC3426764

[156]

Gelsinger DR.Transcriptional landscape and regulatory roles of small noncoding RNAs in the oxidative stress response of the haloarchaeon Haloferax volcanii.J Bacteriol2018;200 PMCID:PMC5892119

[157]

Gebetsberger J,Mleczko AM,Polacek N.A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress.RNA Biol2017;14:1364-73 PMCID:PMC5711459

[158]

Görke B.Noncoding RNA control of the making and breaking of sugars.Genes Dev2008;22:2914-25

[159]

Vogel J.Small non-coding RNAs and the bacterial outer membrane.Curr Opin Microbiol2006;9:605-11

[160]

Choi HI,Jeon J,Kim KS.Overexpression of MicA induces production of OmpC-enriched outer membrane vesicles that protect against Salmonella challenge.Biochem Biophys Res Commun2017;490:991-6

[161]

Turbant F,Blache A.Interactions and insertion of Escherichia coli Hfq into outer membrane vesicles as revealed by infrared and orientated circular dichroism spectroscopies.Int J Mol Sci2023;24:11424 PMCID:PMC10379585

[162]

Conn AB,Tam TK.Two old dogs, one new trick: a review of RNA polymerase and ribosome interactions during transcription-translation coupling.Int J Mol Sci2019;20:2595 PMCID:PMC6566652

[163]

Levine E,Kuhlman T.Quantitative characteristics of gene regulation by small RNA.PLoS Biol2007;5:e229 PMCID:PMC1994261

[164]

Kubiak K,Yadav I.Amyloid-like Hfq interaction with single-stranded DNA: involvement in recombination and replication in Escherichia coli.QRB Discov2022;3:e15 PMCID:PMC10392684

[165]

Cech GM,Kubiak K.The Escherichia coli Hfq protein: an unattended DNA-transactions regulator.Front Mol Biosci2016;3:36 PMCID:PMC4963395

[166]

Irastortza-Olaziregi M.RNA localization in prokaryotes: where, when, how, and why.Wiley Interdiscip Rev RNA2021;12:e1615

[167]

Riolo G,Marzocchi C.miRNA targets: from prediction tools to experimental validation.Methods Protoc2020;4:1 PMCID:PMC7839038

[168]

Agarwal V,Nam JW.Predicting effective microRNA target sites in mammalian mRNAs.Elife2015;4:e05005 PMCID:PMC4532895

[169]

McGeary SE,Shi CY.The biochemical basis of microRNA targeting efficacy.Science2019;366:eaav1741 PMCID:PMC7051167

[170]

Wen M,Zhang Z,Li T.DeepMirTar: a deep-learning approach for predicting human miRNA targets.Bioinformatics2018;34:3781-7

[171]

Tastsoglou S,Karagkouni D,Zacharopoulou E.DIANA-microT 2023: including predicted targets of virally encoded miRNAs.Nucleic Acids Res2023;51:W148-53 PMCID:PMC10320106

[172]

Altschul SF,Miller W,Lipman DJ.Basic local alignment search tool.J Mol Biol1990;215:403-10

[173]

Künne T,Brouns SJ.Planting the seed: target recognition of short guide RNAs.Trends Microbiol2014;22:74-83

[174]

Enright AJ,Gaul U,Sander C.MicroRNA targets in Drosophila.Genome Biol2003;5:R1 PMCID:PMC395733

[175]

Mückstein U,Hackermüller J,Stadler PF.Thermodynamics of RNA-RNA binding.Bioinformatics2006;22:1177-82

[176]

Liu C,Long D.CLIP-based prediction of mammalian microRNA binding sites.Nucleic Acids Res2013;41:e138 PMCID:PMC3737542

[177]

Hammell M,Zhang L.mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts.Nat Methods2008;5:813-9 PMCID:PMC3092588

[178]

Horne R,Odeh S,Foster JA.Microbe and host interaction in gastrointestinal homeostasis.Psychopharmacology2019;236:1623-40 PMCID:PMC6599184

[179]

Nicolas FE.Experimental validation of microRNA targets using a luciferase reporter system. In: Dalmay T, editor. MicroRNAs in development: methods and protocols. Totowa, NJ: Humana Press; 2011. pp. 139-52.

[180]

Urban JH.Translational control and target recognition by Escherichia coli small RNAs in vivo.Nucleic Acids Res2007;35:1018-37 PMCID:PMC1807950

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/