PDF
Abstract
Aim: To study the ability of bifidobacterial strains isolated from fecal donors to prevent pathogens from adhering to intestinal mucus, along with their antimicrobial susceptibility.
Methods: Pathogen prevention was assessed through an in vitro adhesion assay using immobilized porcine mucus. Subsequently, bifidobacterial RNA-Seq data were analyzed to pinpoint glycoside hydrolases and glycosyltransferases possibly involved in mucus degradation affecting pathogen adhesion. The antimicrobial susceptibility of bifidobacterial strains was evaluated using in vitro susceptibility testing, followed by analysis of whole-genome sequencing data to reveal antimicrobial resistance genes.
Results: Bifidobacterial strains inhibited pathogen adhesion to intestinal mucus, with most strains reducing the adhesion levels of pathogens like Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus by at least 70%. None of the strains significantly affected Pseudomonas aeruginosa, but they moderately reduced the adhesion of Yersinia enterocolitica. Gene expression analysis indicated that the more effective strains expressed higher levels of glycoside hydrolases, correlating with their pathogen exclusion capabilities. Antimicrobial susceptibility testing revealed that most strains were sensitive to several antibiotics, though some exhibited resistance to tobramycin, trimethoprim, and ciprofloxacin. Notably, one strain carried the tetW gene, conferring resistance to tetracycline.
Conclusion: The bifidobacterial strains characterized in this study show potential for bacteriotherapeutic applications due to their strong ability to interfere with the adhesion of pathogenic bacteria and their lack of alarming antimicrobial resistance patterns.
Keywords
Antagonism
/
antimicrobial resistance
/
bacteriotherapy
/
hydrolase
/
mucus degradation
/
next-generation probiotics
Cite this article
Download citation ▾
Aki Ronkainen, Imran Khan, Reetta Satokari.
Pathogen exclusion from intestinal mucus and antimicrobial susceptibility of Bifidobacterium spp. strains from fecal donors.
Microbiome Research Reports, 2024, 4(1): 5 DOI:10.20517/mrr.2024.43
| [1] |
Wilson BC,Cutfield WS.The super-donor phenomenon in fecal microbiota transplantation.Front Cell Infect Microbiol2019;9:2 PMCID:PMC6348388
|
| [2] |
Allegretti JR,Kelly C.The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications.Lancet2019;394:420-31
|
| [3] |
Schmidt TSB,Maistrenko OM.Drivers and determinants of strain dynamics following fecal microbiota transplantation.Nat Med2022;28:1902-12 PMCID:PMC9499871
|
| [4] |
Ianiro G,Karcher N.Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases.Nat Med2022;28:1913-23 PMCID:PMC9499858
|
| [5] |
Cammarota G, Ianiro G, Tilg H, et al; European FMT Working Group. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017;66:569-80. PMCID:PMC5529972
|
| [6] |
Drewes JL,Sanchez U.Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile.JCI Insight2019;4:e130848 PMCID:PMC6795395
|
| [7] |
DeFilipp Z,Torres Soto M.Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant.N Engl J Med2019;381:2043-50
|
| [8] |
Kao D,Franz R.The effect of a microbial ecosystem therapeutic (MET-2) on recurrent Clostridioides difficile infection: a phase 1, open-label, single-group trial.Lancet Gastroenterol Hepatol2021;6:282-91
|
| [9] |
Duranti S,Ventura M,Turroni F.Exploring the ecology of bifidobacteria and their genetic adaptation to the mammalian gut.Microorganisms2020;9:8 PMCID:PMC7822027
|
| [10] |
Alessandri G,Ventura M.The genus bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota running title: bifidobacterial adaptation to and interaction with the host.Comput Struct Biotechnol J2021;19:1472-87 PMCID:PMC7979991
|
| [11] |
Binda S,Johansen E.Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements.Front Microbiol2020;11:1662 PMCID:PMC7394020
|
| [12] |
Zúñiga M,Yebra MJ.Utilization of host-derived glycans by intestinal Lactobacillus and Bifidobacterium species.Front Microbiol2018;9:1917 PMCID:PMC6109692
|
| [13] |
Derrien M,van de Bovenkamp JH,de Vos WM.Mucin-bacterial interactions in the human oral cavity and digestive tract.Gut Microbes2010;1:254-68 PMCID:PMC3023607
|
| [14] |
Westermann C,Corr SC.A critical evaluation of bifidobacterial adhesion to the host tissue.Front Microbiol2016;7:1220 PMCID:PMC4974247
|
| [15] |
Yu JY,Puthiyakunnon S.Mucin2 is required for probiotic agents-mediated blocking effects on meningitic E. coli-induced pathogenicities.J Microbiol Biotechnol2015;25:1751-60
|
| [16] |
Turroni F,van Sinderen D.Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human-microbe co-evolution.Gut Microbes2011;2:183-9
|
| [17] |
Glover JS,Engevik MA.Characterizing the mucin-degrading capacity of the human gut microbiota.Sci Rep2022;12:8456 PMCID:PMC9120202
|
| [18] |
Gutierrez A,Engevik MA.Bifidobacterium and the intestinal mucus layer.Microbiome Res Rep2023;2:36 PMCID:PMC10688832
|
| [19] |
Paone P.Mucus barrier, mucins and gut microbiota: the expected slimy partners?.Gut2020;69:2232-43 PMCID:PMC7677487
|
| [20] |
Garrido D,Ruiz-Moyano S.Endo-β-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins.Mol Cell Proteomics2012;11:775-85 PMCID:PMC3434770
|
| [21] |
Duranti S,Mancabelli L.Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria.Appl Environ Microbiol2017;83:e02894-16 PMCID:PMC5244288
|
| [22] |
Sharma M,Sharma RK.Recent developments in probiotics: an emphasis on Bifidobacterium.Food Biosci2021;41:100993
|
| [23] |
Jouhten H,Aakko J.Cultivation and genomics prove long-term colonization of donor’s bifidobacteria in recurrent Clostridioides difficile patients treated with fecal microbiota transplantation.Front Microbiol2020;11:1663 PMCID:PMC7373762
|
| [24] |
Ronkainen A,Krzyżewska-Dudek E,Freitag TL.In vitro adhesion, pilus expression, and in vivo amelioration of antibiotic-induced microbiota disturbance by Bifidobacterium spp. strains from fecal donors.Gut Microbes2023;15:2229944 PMCID:PMC10321227
|
| [25] |
Jalanka J,Jouhten H.Long-term effects on luminal and mucosal microbiota and commonly acquired taxa in faecal microbiota transplantation for recurrent Clostridium difficile infection.BMC Med2016;14:155 PMCID:PMC5057499
|
| [26] |
Mattila E,Wuorela M.Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection.Gastroenterology2012;142:490-6
|
| [27] |
Vesterlund S,Salminen S.Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria.Microbiology2006;152:1819-26
|
| [28] |
Chen S,Chen Y.fastp: an ultra-fast all-in-one FASTQ preprocessor.Bioinformatics2018;34:i884-90 PMCID:PMC6129281
|
| [29] |
Ewels P,Lundin S.MultiQC: summarize analysis results for multiple tools and samples in a single report.Bioinformatics2016;32:3047-8 PMCID:PMC5039924
|
| [30] |
Andrews S. FastQC: a quality control tool for high throughput sequence data. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. [Last accessed on 16 Oct 2024]
|
| [31] |
Page AJ,Hunt M.Roary: rapid large-scale prokaryote pan genome analysis.Bioinformatics2015;31:3691-3 PMCID:PMC4817141
|
| [32] |
Li H.Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics2009;25:1754-60 PMCID:PMC2705234
|
| [33] |
Li B.RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.BMC Bioinformatics2011;12:323 PMCID:PMC3163565
|
| [34] |
Robinson MD,Smyth GK.edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics2010;26:139-40 PMCID:PMC2796818
|
| [35] |
Florensa AF,Clausen PTLC,Aarestrup FM.ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes.Microbial Genomics2022;8:000748 PMCID:PMC8914360
|
| [36] |
Keller B,Deuschle E.Yersinia enterocolitica exploits different pathways to accomplish adhesion and toxin injection into host cells.Cell Microbiol2015;17:1179-204
|
| [37] |
Hoffman CL,Aballay A.Host mucin is exploited by pseudomonas aeruginosa to provide monosaccharides required for a successful infection.mBio2020;11:e00060-20 PMCID:PMC7064748
|
| [38] |
Wijesinghe G,Gayani B,Samaranayake L.Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus.Med Princ Pract2019;28:28-35 PMCID:PMC6558334
|
| [39] |
Co JY,Billings N.Mucins trigger dispersal of Pseudomonas aeruginosa biofilms.NPJ Biofilms Microbiomes2018;4:23 PMCID:PMC6180003
|
| [40] |
Wheeler KM,Turner BS.Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection.Nat Microbiol2019;4:2146-54 PMCID:PMC7157942
|
| [41] |
Vazquez-Gutierrez P,Werder J,Lacroix C.High iron-sequestrating bifidobacteria inhibit enteropathogen growth and adhesion to intestinal epithelial cells in vitro.Front Microbiol2016;7:1480 PMCID:PMC5031772
|
| [42] |
Collado MC,Hernández M,Salminen S.Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion.J Food Prot2005;68:2672-8
|
| [43] |
Serafini F,Ruas-Madiedo P.Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010.Anaerobe2013;21:9-17
|
| [44] |
Poole J,von Itzstein M,Jennings MP.Glycointeractions in bacterial pathogenesis.Nat Rev Microbiol2018;16:440-52
|
| [45] |
Biavati B.Bifidobacterium. In: Whitman WB, editor. Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley; 2015. pp. 1-57.
|
| [46] |
Masco L,De Brandt E,Hugs G.Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products.J Antimicrob Chemother2006;58:85-94
|
| [47] |
Saturio S,Alvarado-Jasso GM.Role of bifidobacteria on infant health.Microorganisms2021;9:2415 PMCID:PMC8708449
|
| [48] |
Gueimonde M,G de Los Reyes-Gavilán C.Antibiotic resistance in probiotic bacteria.Front Microbiol2013;4:202 PMCID:PMC3714544
|
| [49] |
Klein RD.Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies.Nat Rev Microbiol2020;18:211-26 PMCID:PMC7942789
|
| [50] |
Woerther PL,Kantele A.Travel-acquired ESBL-producing Enterobacteriaceae: impact of colonization at individual and community level.J Travel Med2017;24:S29-34 PMCID:PMC5441303
|
| [51] |
EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen G, Aquilina G, Azimonti G, et al. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J 2018;16:e05206. PMCID:PMC7009341
|