Assessing fecal metaproteomics workflow and small protein recovery using DDA and DIA PASEF mass spectrometry

Angela Wang , Emily E F Fekete , Marybeth Creskey , Kai Cheng , Zhibin Ning , Annabelle Pfeifle , Xuguang Li , Daniel Figeys , Xu Zhang

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) : 39

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) :39 DOI: 10.20517/mrr.2024.21
Original Article

Assessing fecal metaproteomics workflow and small protein recovery using DDA and DIA PASEF mass spectrometry

Author information +
History +
PDF

Abstract

Aim: This study aims to evaluate the impact of experimental workflow on fecal metaproteomic observations, including the recovery of small and antimicrobial proteins often overlooked in metaproteomic studies. The overarching goal is to provide guidance for optimized metaproteomic experimental design, considering the emerging significance of the gut microbiome in human health, disease, and therapeutic interventions.

Methods: Mouse feces were utilized as the experimental model. Fecal sample pre-processing methods (differential centrifugation and non-differential centrifugation), protein digestion techniques (in-solution and filter-aided), data acquisition modes (data-dependent and data-independent, or DDA and DIA) when combined with parallel accumulation-serial fragmentation (PASEF), and different bioinformatic workflows were assessed.

Results: We showed that, in DIA-PASEF metaproteomics, the library-free search using protein sequence database generated from DDA-PASEF data achieved better identifications than using the generated spectral library. Compared to DDA, DIA-PASEF identified more microbial peptides, quantified more proteins with fewer missing values, and recovered more small antimicrobial proteins. We did not observe any obvious impacts of protein digestion methods on both taxonomic and functional profiles. However, differential centrifugation decreased the recovery of small and antimicrobial proteins, biased the taxonomic observation with a marked overestimation of Muribaculum species, and altered the measured functional compositions of metaproteome.

Conclusion: This study underscores the critical impact of experimental choices on metaproteomic outcomes and sheds light on the potential biases introduced at different stages of the workflow. The comprehensive methodological comparisons serve as a valuable guide for researchers aiming to enhance the accuracy and completeness of metaproteomic analyses.

Keywords

Fecal metaproteomics / microbiome / mass spectrometry / differential centrifugation

Cite this article

Download citation ▾
Angela Wang, Emily E F Fekete, Marybeth Creskey, Kai Cheng, Zhibin Ning, Annabelle Pfeifle, Xuguang Li, Daniel Figeys, Xu Zhang. Assessing fecal metaproteomics workflow and small protein recovery using DDA and DIA PASEF mass spectrometry. Microbiome Research Reports, 2024, 3(3): 39 DOI:10.20517/mrr.2024.21

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hou K,Chen XY.Microbiota in health and diseases.Signal Transduct Target Ther2022;7:135 PMCID:PMC9034083

[2]

Guzzo GL,Weyrich LS.The neglected gut microbiome: fungi, protozoa, and bacteriophages in inflammatory bowel disease.Inflamm Bowel Dis2022;28:1112-22 PMCID:PMC9247841

[3]

Hrncir T.Gut microbiota dysbiosis: triggers, consequences, diagnostic and therapeutic options.Microorganisms2022;10:578 PMCID:PMC8954387

[4]

Zhang Z,Chen P,Tao Y.Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome.Signal Transduct Target Ther2019;4:41 PMCID:PMC6799818

[5]

Ogunrinola GA,Oshamika OO.The human microbiome and its impacts on health.Int J Microbiol2020;2020:8045646 PMCID:PMC7306068

[6]

Dinakaran V,Pushpanathan M,Gunasekaran P.Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation.PLoS One2014;9:e105221 PMCID:PMC4136842

[7]

Kinross JM,Nicholson JK.Gut microbiome-host interactions in health and disease.Genome Med2011;3:14 PMCID:PMC3092099

[8]

Fekete EE,Zhang X.Microbiota-directed biotherapeutics: considerations for quality and functional assessment.Gut Microbes2023;15:2186671 PMCID:PMC10012963

[9]

Ferrocino I, Rantsiou K, McClure R, et al; MicrobiomeSupport Consortium. The need for an integrated multi-OMICs approach in microbiome science in the food system. Compr Rev Food Sci Food Saf 2023;22:1082-103.

[10]

Berg G,Fischer D.Microbiome definition re-visited: old concepts and new challenges.Microbiome2020;8:103 PMCID:PMC7329523

[11]

Zhang X,Butcher J,Figeys D.Advancing functional and translational microbiome research using meta-omics approaches.Microbiome2019;7:154 PMCID:PMC6898977

[12]

Creskey M,Ning Z.An economic and robust TMT labeling approach for high throughput proteomic and metaproteomic analysis.Proteomics2023;23:e2200116

[13]

Pietilä S,Elo LL.Introducing untargeted data-independent acquisition for metaproteomics of complex microbial samples.ISME Commun2022;2:51 PMCID:PMC9723653

[14]

Fernández-Costa C,McClatchy DB,Yu NK.Impact of the identification strategy on the reproducibility of the DDA and DIA results.J Proteome Res2020;19:3153-61 PMCID:PMC7898222

[15]

Zhang F,Ruan G,Guo T.Data-independent acquisition mass spectrometry-based proteomics and software tools: a glimpse in 2020.Proteomics2020;20:e1900276

[16]

Demichev V,Vernardis SI,Ralser M.DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput.Nat Methods2020;17:41-4 PMCID:PMC6949130

[17]

Meier F,Frank M.diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition.Nat Methods2020;17:1229-36

[18]

Guzman UH,Ye Z.Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition. Nat Biotechnol 2024.

[19]

Zhao J,Xu H.Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota.NPJ Biofilms Microbiomes2023;9:4 PMCID:PMC9873935

[20]

Dumas T,Lozano C.The astounding exhaustiveness and speed of the Astral mass analyzer for highly complex samples is a quantum leap in the functional analysis of microbiomes.Microbiome2024;12:46 PMCID:PMC10918999

[21]

Gómez-Varela D,Grundtner S,Carta G.Increasing taxonomic and functional characterization of host-microbiome interactions by DIA-PASEF metaproteomics.Front Microbiol2023;14:1258703 PMCID:PMC10613666

[22]

Zhang X,Ning Z.Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.Nat Commun2018;9:2873 PMCID:PMC6054643

[23]

Karaduta O,Zybailov B.Metaproteomics-an advantageous option in studies of host-microbiota interaction.Microorganisms2021;9:980 PMCID:PMC8147213

[24]

Starr AE,Li L.Proteomic and metaproteomic approaches to understand host-microbe interactions.Anal Chem2018;90:86-109

[25]

Sberro H,Zlitni S.Large-scale analyses of human microbiomes reveal thousands of small, novel genes.Cell2019;178:1245-59.e14 PMCID:PMC6764417

[26]

Petruschke H,Canzler S.Discovery of novel community-relevant small proteins in a simplified human intestinal microbiome.Microbiome2021;9:55 PMCID:PMC7903761

[27]

Ma Y,Xia B.Identification of antimicrobial peptides from the human gut microbiome using deep learning.Nat Biotechnol2022;40:921-31

[28]

Su M,Yu J,Xiao J.Small proteins: untapped area of potential biological importance.Front Genet2013;4:286 PMCID:PMC3864261

[29]

Leary DH,Deschamps JR,Vora GJ.Which metaproteome? The impact of protein extraction bias on metaproteomic analyses.Mol Cell Probes2013;27:193-9

[30]

Tanca A,Pisanu S,Uzzau S.Enrichment or depletion? The impact of stool pretreatment on metaproteomic characterization of the human gut microbiota.Proteomics2015;15:3474-85

[31]

Blackburn JM.The challenge of metaproteomic analysis in human samples.Expert Rev Proteomics2016;13:135-8

[32]

Zhang X,Mayne J,Stintzi A.Assessing the impact of protein extraction methods for human gut metaproteomics.J Proteomics2018;180:120-7

[33]

Xiao L,Liang S.A catalog of the mouse gut metagenome.Nat Biotechnol2015;33:1103-8

[34]

Chi H,Yang H.Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine.Nat Biotechnol2018;36:1059-61

[35]

Kong AT,Avtonomov DM,Nesvizhskii AI.MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics.Nat Methods2017;14:513-20 PMCID:PMC5409104

[36]

Cheng K,Zhang X.MetaLab 2.0 enables accurate post-translational modifications profiling in metaproteomics.J Am Soc Mass Spectrom2020;31:1473-82

[37]

Santos-Júnior CD, Der Torossian Torres M, Duan Y, et al. Computational exploration of the global microbiome for antibiotic discovery. bioRxiv 2023. PMCID:PMC10491242

[38]

Xian F,Krisp C,Schmidt M. Ultra-sensitive metaproteomics (uMetaP) redefines the dark field of metaproteome, enables single-bacterium resolution, and discovers hidden functions in the gut microbiome. bioRXiv. [Preprint] Apr 22, 2024. [accessed on 2024 Jun 28]. Available from: https://www.biorxiv.org/content/10.1101/2024.04.22.590295v1.

[39]

Fuchs S.Small proteins in bacteria - Big challenges in prediction and identification.Proteomics2023;23:e2200421

[40]

Nalpas N,Anselm V.An integrated workflow for enhanced taxonomic and functional coverage of the mouse fecal metaproteome.Gut Microbes2021;13:1994836 PMCID:PMC8726736

[41]

Lagkouvardos I,Hitch TCA.Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family.Microbiome2019;7:28 PMCID:PMC6381624

[42]

Arumugam M, Raes J, Pelletier E, et al; MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature 2011;473:174-80. PMCID:PMC3728647

[43]

Duan H,Sun Z,Sun Y. MetaDIA: a novel database reduction strategy for DIA human gut metaproteomics. bioRxiv. [Preprint] Mar 16, 2024. [accessed on 2024 Jun 28]. Available from: https://www.biorxiv.org/content/10.1101/2024.03.14.585104v1.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/