Gut microbiota prevents small intestinal tumor formation due to bile acids in gnotobiotic mice

Esther Wortmann , David Wylensek , Marijana Basic , Sven Hermeling , André Bleich , Dirk Haller , René Tolba , Gerhard Liebisch , Klaus-Peter Janssen , Thomas Clavel

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (4) : 44

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (4) :44 DOI: 10.20517/mrr.2024.20
Original Article

Gut microbiota prevents small intestinal tumor formation due to bile acids in gnotobiotic mice

Author information +
History +
PDF

Abstract

Aim: The gut microbiota is implicated in the development of intestinal tumors. Furthermore, Western diet is a risk factor for colorectal cancer and induces alterations in both the microbiota and bile acid metabolism. Therefore, we aimed to investigate the causal role of Western diet-induced changes in the microbiota and secondary bile acid production, which were linked to disease exacerbation in APC1311/+ pigs.

Methods: We performed fecal microbiota transfer experiments by inoculating germfree Apc1368N/+ mice with stool from genetically engineered APC1311/+ pigs. A control group of Apc1368N/+ mice stayed germfree. All mice were fed either a control diet, or the same diet supplemented with the primary bile acid cholic acid (CA) to stimulate secondary bile acid production.

Results: Unexpectedly, the germfree mice fed CA had a high number of lesions in the upper small intestine, which was reduced by the colonization with microbes. The same mice (germfree, CA diet) were characterized by a remarkable lengthening of the small intestine (approximately +10 cm on average). Colonic lesions were rare and only observed in the mice that received stool from control pigs and fed the CA diet. Diversity and composition analyses showed that the microbiota transfer was incomplete. Nevertheless, mice receiving the Western diet-associated microbiota clustered separately from control animals. The effects of the CA diet on the microbiota were less pronounced and were observed primarily in mice that received stool from control pigs. Bile acid analysis in the recipient mice revealed associations between the phenotype and specific bile acid species in bile and cecum.

Conclusion: This descriptive study highlights the importance of diet-microbiota-bile acid interactions in intestinal morphogenesis and tumorigenesis.

Keywords

Gut microbiota / bile acids / colorectal cancer / animal model / fecal microbiota transfer

Cite this article

Download citation ▾
Esther Wortmann, David Wylensek, Marijana Basic, Sven Hermeling, André Bleich, Dirk Haller, René Tolba, Gerhard Liebisch, Klaus-Peter Janssen, Thomas Clavel. Gut microbiota prevents small intestinal tumor formation due to bile acids in gnotobiotic mice. Microbiome Research Reports, 2024, 3(4): 44 DOI:10.20517/mrr.2024.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H,Siegel RL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[2]

Arnold M,Neale RE.Global burden of 5 major types of gastrointestinal cancer.Gastroenterology2020;159:335-49.e15 PMCID:PMC8630546

[3]

Murphy N,Hughes DJ.Lifestyle and dietary environmental factors in colorectal cancer susceptibility.Mol Aspects Med2019;69:2-9

[4]

Garcia-Larsen V,Norat T.Dietary patterns derived from principal component analysis (PCA) and risk of colorectal cancer: a systematic review and meta-analysis.Eur J Clin Nutr2019;73:366-86

[5]

Bouvard V, Loomis D, Guyton KZ, et al; International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of consumption of red and processed meat.Lancet Oncol2015;16:1599-600

[6]

O’Keefe SJ,Lahti L.Fat, fibre and cancer risk in African Americans and rural Africans.Nat Commun2015;6:6342 PMCID:PMC4415091

[7]

David LA,Carmody RN.Diet rapidly and reproducibly alters the human gut microbiome.Nature2014;505:559-63 PMCID:PMC3957428

[8]

Kawano A,Kamano T.Significance of fecal deoxycholic acid concentration for colorectal tumor enlargement.Asian Pac J Cancer Prev2010;11:1541-6

[9]

Yachida S,Shiroma H.Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer.Nat Med2019;25:968-76

[10]

Carethers JM.Genetics and genetic biomarkers in sporadic colorectal cancer.Gastroenterology2015;149:1177-90.e3 PMCID:PMC4589489

[11]

Fodde R,Rosenberg C.Mutations in the APC tumour suppressor gene cause chromosomal instability.Nat Cell Biol2001;3:433-8

[12]

Bürtin F,Linnebacher M.Mouse models of colorectal cancer: past, present and future perspectives.World J Gastroenterol2020;26:1394-426 PMCID:PMC7152519

[13]

Jackstadt R.Mouse models of intestinal cancer.J Pathol2016;238:141-51 PMCID:PMC4832380

[14]

Smits R,Luz A.Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts.Gastroenterology1998;114:275-83

[15]

Coleman OI,Bierwirth S.Activated ATF6 induces intestinal dysbiosis and innate immune response to promote colorectal tumorigenesis.Gastroenterology2018;155:1539-52.e12

[16]

Gonzalez LM,Blikslager AT.Porcine models of digestive disease: the future of large animal translational research.Transl Res2015;166:12-27 PMCID:PMC4458388

[17]

Wortmann E,Wylensek D. Secondary bile acid production by gut bacteria promotes Western diet-associated colorectal cancer. bioRxiv. [Preprint.] Mar 18, 2023 [accessed 2024 Aug 13]. Available from: https://www.biorxiv.org/content/10.1101/2023.03.17.533140v1.

[18]

Wang S,Liu L.Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis.Mol Carcinog2019;58:1155-67 PMCID:PMC6593857

[19]

Cao H,Dong W.Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis.Int J Cancer2017;140:2545-56

[20]

Fu T,Yoshihara E.FXR regulates intestinal cancer stem cell proliferation.Cell2019;176:1098-112.e18 PMCID:PMC6701863

[21]

Li L,Zhong W.Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apcmin/+ mice.EBioMedicine2019;48:301-15 PMCID:PMC6838415

[22]

Wong SH,Zhang X.Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice.Gastroenterology2017;153:1621-33.e6

[23]

Walter J,Finlay BB.Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents.Cell2020;180:221-32

[24]

Holtorf A,Holzmann B.Cell-type specific MyD88 signaling is required for intestinal tumor initiation and progression to malignancy.Oncoimmunology2018;7:e1466770 PMCID:PMC6136867

[25]

Li JN.Fecal occult blood test in colorectal cancer screening.J Dig Dis2019;20:62-4

[26]

Krautbauer S,Liebisch G.Relevance in the use of appropriate internal standards for accurate quantification using LC-MS/MS: tauro-conjugated bile acids as an example.Anal Chem2016;88:10957-61

[27]

Schött HF,Höring M,Matysik S.A validated, fast method for quantification of sterols and gut microbiome derived 5α/β-stanols in human feces by isotope dilution LC-high-resolution MS.Anal Chem2018;90:8487-94

[28]

Just S,Ecker J.The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism.Microbiome2018;6:134 PMCID:PMC6091023

[29]

Afrizal A,Hitch TCA.Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities.Cell Host Microbe2022;30:1630-45.e25

[30]

Lagkouvardos I,Kapfhammer M.IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies.Sci Rep2016;6:33721 PMCID:PMC5034312

[31]

Edgar RC.UPARSE: highly accurate OTU sequences from microbial amplicon reads.Nat Methods2013;10:996-8

[32]

Edgar RC.Search and clustering orders of magnitude faster than BLAST.Bioinformatics2010;26:2460-1

[33]

Kopylova E,Touzet H.SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data.Bioinformatics2012;28:3211-7

[34]

Pruesse E,Glöckner FO.SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.Bioinformatics2012;28:1823-9 PMCID:PMC3389763

[35]

Lagkouvardos I,Kumar N.Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons.PeerJ2017;5:e2836 PMCID:PMC5234437

[36]

Yoon SH,Kwon S.Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies.Int J Syst Evol Microbiol2017;67:1613-7 PMCID:PMC5563544

[37]

Gu Z.Complex heatmap visualization.Imeta2022;1:e43 PMCID:PMC10989952

[38]

Kassambara A. rstatix: pipe-friendly framework for basic statistical tests. R package version 0.7.2. (2023) Available from: https://rpkgs.datanovia.com/rstatix/. [Last accessed on 13 Aug 2024]

[39]

Fodde R,Yang K.A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors.Proc Natl Acad Sci U S A1994;91:8969-73 PMCID:PMC44728

[40]

Wortmann E.Targeting the gut microbiota to investigate the role of secondary bile acids in colorectal cancer = Einfluss sekundärer Gallensäuren auf Kolorektalkrebs mit Fokus auf das Darmmikrobiom. RWTH Aachen University; 2023.

[41]

Mahmoud NN,Bilinski RT.Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis.Carcinogenesis1999;20:299-303

[42]

Slezak K,Rabot S.Association of germ-free mice with a simplified human intestinal microbiota results in a shortened intestine.Gut Microbes2014;5:176-82 PMCID:PMC4063842

[43]

Yamanaka M,Tokioka J.A comparison of the gastrointestinal tract in germ-free and conventional mice fed an amino acid mixture or purified whole-egg protein.J Nutr Sci Vitaminol1980;26:435-47

[44]

Nguyen JT,Zhang T,Anakk S.Deletion of intestinal SHP impairs short-term response to cholic acid challenge in male mice.Endocrinology2021;162:bqab063 PMCID:PMC8256632

[45]

Claus SP,Berger B.Colonization-induced host-gut microbial metabolic interaction.mBio2011;2:e00271-10 PMCID:PMC3045766

[46]

Wang DQ,Cohen DE.Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse.Am J Physiol Gastrointest Liver Physiol2003;285:G494-502

[47]

Payne CM,Dvorak K.Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis.Clin Exp Gastroenterol2008;1:19-47 PMCID:PMC3108627

[48]

Augustin T,Cengiz TB.Survival outcomes after surgical management of sporadic or familial adenomatous polyposis associated duodenal cancer.J Surg Oncol2020;122:1132-44

[49]

Dossa AY,Golden J,Ford HR.Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling.Am J Physiol Gastrointest Liver Physiol2016;310:G81-92 PMCID:PMC4719061

[50]

Spinelli V,Baud G.Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans.Int J Obes2016;40:1260-7

[51]

Li J.Animal models to study bile acid metabolism.Biochim Biophys Acta Mol Basis Dis2019;1865:895-911 PMCID:PMC6242766

[52]

Devkota S,Musch MW.Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice.Nature2012;487:104-8 PMCID:PMC3393783

[53]

Arrieta MC,Finlay BB.Human microbiota-associated mice: a model with challenges.Cell Host Microbe2016;19:575-8

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/