Supplementation with a cranberry extract favors the establishment of butyrogenic guilds in the human fermentation SHIME system

Valentina Cattero , Charlène Roussel , Jacob Lessard-Lord , Denis Roy , Yves Desjardins

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) : 34

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) :34 DOI: 10.20517/mrr.2024.17
Original Article

Supplementation with a cranberry extract favors the establishment of butyrogenic guilds in the human fermentation SHIME system

Author information +
History +
PDF

Abstract

Background: Proanthocyanidins (PAC) and oligosaccharides from cranberry exhibit multiple bioactive health properties and persist intact in the colon post-ingestion. They display a complex bidirectional interaction with the microbiome, which varies based on both time and specific regions of the gut; the nature of this interaction remains inadequately understood. Therefore, we aimed to investigate the impact of cranberry extract on gut microbiota ecology and function.

Methods: We studied the effect of a cranberry extract on six healthy participants over a two-week supplementation period using the ex vivo artificial fermentation system TWIN-M-SHIME to replicate luminal and mucosal niches of the ascending and transverse colon.

Results: Our findings revealed a significant influence of cranberry extract supplementation on the gut microbiota ecology under ex vivo conditions, leading to a considerable change in bacterial metabolism. Specifically, Bifidobacterium adolescentis (B. adolescentis) flourished in the mucus of the ascending colon, accompanied by a reduced adhesion of Proteobacteria. The overall bacterial metabolism shifted from acetate to propionate and, notably, butyrate production following PAC supplementation. Although there were variations in microbiota modulation among the six donors, the butyrogenic effect induced by the supplementation remained consistent across all individuals. This metabolic shift was associated with a rise in the relative abundance of several short-chain fatty acid (SCFA)-producing bacterial genera and the formation of a consortium of key butyrogenic bacteria in the mucus of the transverse colon.

Conclusion: These observations suggest that cranberry extract supplementation has the potential to modulate the gut microbiota in a manner that may promote overall gut health.

Keywords

Proanthocyanidins / gut microbiota / bifidogenic effect / mucus / Akkermansia muciniphila / butyrate / M-SHIME fermentation system

Cite this article

Download citation ▾
Valentina Cattero, Charlène Roussel, Jacob Lessard-Lord, Denis Roy, Yves Desjardins. Supplementation with a cranberry extract favors the establishment of butyrogenic guilds in the human fermentation SHIME system. Microbiome Research Reports, 2024, 3(3): 34 DOI:10.20517/mrr.2024.17

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Smeriglio A,Bellocco E.Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects.Br J Pharmacol2017;174:1244-62 PMCID:PMC5429339

[2]

Mannino G,Serio G.Proanthocyanidins and where to find them: a meta-analytic approach to investigate their chemistry, biosynthesis, distribution, and effect on human health.Antioxidants2021;10:1229 PMCID:PMC8389005

[3]

Rauf A,Abu-Izneid T.Proanthocyanidins: a comprehensive review.Biomed Pharmacother2019;116:108999

[4]

Favari C,Curti C,Angelino D.Flavan-3-ols: catechins and proanthocyanidins. In: Tomás-barberán FA, González-sarrías A, García-villalba R, editors. Dietary polyphenols. Wiley; 2020. pp. 283-317.

[5]

Feldman F,El-Jalbout R.Cranberry proanthocyanidins as a therapeutic strategy to curb metabolic syndrome and fatty liver-associated disorders.Antioxidants2022;12:90 PMCID:PMC9854780

[6]

de la Iglesia R, Milagro FI, Campión J, Boqué N, Martínez JA. Healthy properties of proanthocyanidins.Biofactors2010;36:159-68

[7]

Rowland I,Heinken A.Gut microbiota functions: metabolism of nutrients and other food components.Eur J Nutr2018;57:1-24 PMCID:PMC5847071

[8]

Tao W,Shen X.Rethinking the mechanism of the health benefits of proanthocyanidins: absorption, metabolism, and interaction with gut microbiota.Compr Rev Food Sci Food Saf2019;18:971-85

[9]

Lessard-Lord J,Guay V.Assessing the gut microbiota’s ability to metabolize oligomeric and polymeric flavan-3-ols from aronia and cranberry.Mol Nutr Food Res2024;68:e2300641

[10]

Coleman CM.Oligosaccharides and complex carbohydrates: a new paradigm for cranberry bioactivity.Molecules2020;25:881 PMCID:PMC7070526

[11]

Karboune S,Fliss I.In-vitro digestion and fermentation of cranberry extracts rich in cell wall oligo/polysaccharides.J Funct Foods2022;92:105039

[12]

Sallam IE,Attia H.Effect of gut microbiota biotransformation on dietary tannins and human health implications.Microorganisms2021;9:965 PMCID:PMC8145700

[13]

Ma G.Polyphenol supplementation benefits human health via gut microbiota: a systematic review via meta-analysis.J Funct Foods2020;66:103829

[14]

Rodríguez-Daza MC,Lupien-Meilleur J,Desjardins Y.Polyphenol-mediated gut microbiota modulation: toward prebiotics and further.Front Nutr2021;8:689456 PMCID:PMC8276758

[15]

van Dorsten FA,Gross G.Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent.J Agric Food Chem2012;60:11331-42

[16]

Wu T,Pitart J.Aronia (aronia melanocarpa) polyphenols modulate the microbial community in a simulator of the human intestinal microbial ecosystem (SHIME) and decrease secretion of proinflammatory markers in a caco-2/endothelial cell coculture model.Mol Nutr Food Res2018;62:e1800607

[17]

Rodríguez-Daza MC,Boutkrabt L.Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice.Sci Rep2020;10:2217 PMCID:PMC7010699

[18]

Cires MJ,Pastene E.Effect of a proanthocyanidin-rich polyphenol extract from avocado on the production of amino acid-derived bacterial metabolites and the microbiota composition in rats fed a high-protein diet.Food Funct2019;10:4022-35

[19]

Chen Y,Zou L,Ni X.Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota.Crit Rev Food Sci Nutr2023;63:6285-308

[20]

Dueñas M,Cueva C.A survey of modulation of gut microbiota by dietary polyphenols.Biomed Res Int2015;2015:850902 PMCID:PMC4352430

[21]

Taibi A,Laytouni-Imbriaco B.The role of intestinal microbiota and microRNAs in the anti-inflammatory effects of cranberry: from pre-clinical to clinical studies.Front Nutr2023;10:1092342 PMCID:PMC10242055

[22]

Redondo-Castillejo R,Hernández-Martín M.Proanthocyanidins: impact on gut microbiota and intestinal action mechanisms in the prevention and treatment of metabolic syndrome.Int J Mol Sci2023;24:5369 PMCID:PMC10049473

[23]

Anhê FF,Roy D,Levy E.Triggering Akkermansia with dietary polyphenols: a new weapon to combat the metabolic syndrome?.Gut Microbes2016;7:146-53 PMCID:PMC4856456

[24]

Rodríguez-Daza MC.Polyphenols as drivers of a homeostatic gut microecology and immuno-metabolic traits of Akkermansia muciniphila: from mouse to man.Int J Mol Sci2022;24:45 PMCID:PMC9820369

[25]

Everard A,Geurts L.Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.Proc Natl Acad Sci U S A2013;110:9066-71 PMCID:PMC3670398

[26]

Andersen-Civil AIS,Williams AR.Regulation of enteric infection and immunity by dietary proanthocyanidins.Front Immunol2021;12:637603 PMCID:PMC7943737

[27]

Dupont D,Blanquet-Diot S.Can dynamic in vitro digestion systems mimic the physiological reality?.Crit Rev Food Sci Nutr2019;59:1546-62

[28]

Lessard-Lord J,Lupien-Meilleur J.Short term supplementation with cranberry extract modulates gut microbiota in human and displays a bifidogenic effect.NPJ Biofilms Microbiomes2024;10:18 PMCID:PMC10918075

[29]

Roussel C,Lessard-Lord J.UPEC colonic-virulence and urovirulence are blunted by proanthocyanidins-rich cranberry extract microbial metabolites in a gut model and a 3D tissue-engineered urothelium.Microbiol Spectr2022;10:e0243221 PMCID:PMC9603664

[30]

Dufour C,Furger C.Cellular antioxidant effect of an aronia extract and its polyphenolic fractions enriched in proanthocyanidins, phenolic acids, and anthocyanins.Antioxidants2022;11:1561 PMCID:PMC9405024

[31]

Jakobek L,Tomás-barberán FA.Polyphenolic characterisation of old local apple varieties from Southeastern European region.J Food Compos Anal2013;31:199-211

[32]

Roussel C,Galia W.Spatial and temporal modulation of enterotoxigenic E. coli H10407 pathogenesis and interplay with microbiota in human gut models.BMC Biol2020;18:141 PMCID:PMC7559199

[33]

Van de Wiele T, Van den Abbeele P, Ossieur W, Possemiers S, Marzorati M. The simulator of the human intestinal microbial ecosystem (SHIME®). In: Verhoeckx K, Cotter P, López-expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H, editors. The Impact of food bioactives on health. Cham: Springer International Publishing; 2015. pp. 305-17.

[34]

Geirnaert A,Tinck M.Interindividual differences in response to treatment with butyrate-producing Butyricicoccus pullicaecorum 25-3T studied in an in vitro gut model.FEMS Microbiol Ecol2015;91:fiv054

[35]

Roussel C,Plante PL,Di Marzo V.Short-term supplementation with ω-3 polyunsaturated fatty acids modulates primarily mucolytic species from the gut luminal mucin niche in a human fermentation system.Gut Microbes2022;14:2120344 PMCID:PMC9481098

[36]

De Paepe K, Verspreet J, Verbeke K, Raes J, Courtin CM, Van de Wiele T. Introducing insoluble wheat bran as a gut microbiota niche in an in vitro dynamic gut model stimulates propionate and butyrate production and induces colon region specific shifts in the luminal and mucosal microbial community.Environ Microbiol2018;20:3406-26

[37]

Kurtz ZD,Miraldi ER,Blaser MJ.Sparse and compositionally robust inference of microbial ecological networks.PLoS Comput Biol2015;11:e1004226 PMCID:PMC4423992

[38]

Banerjee S,van der Heijden MGA.Keystone taxa as drivers of microbiome structure and functioning.Nat Rev Microbiol2018;16:567-76

[39]

Takagaki A.Bioconversion of (-)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin by (-)-epigallocatechin-metabolizing bacteria.Biol Pharm Bull2015;38:789-94

[40]

Takagaki A,Nanjo F.Isolation and characterization of rat intestinal bacteria involved in biotransformation of (-)-epigallocatechin.Arch Microbiol2014;196:681-95

[41]

Ou K.Absorption and metabolism of proanthocyanidins.J Funct Foods2014;7:43-53

[42]

Kutschera M,Blaut M.Isolation of catechin-converting human intestinal bacteria.J Appl Microbiol2011;111:165-75

[43]

Stoupi S,Drynan JW,Clifford MN.Procyanidin B2 catabolism by human fecal microflora: partial characterization of ‘dimeric’ intermediates.Arch Biochem Biophys2010;501:73-8

[44]

Sánchez-Patán F,Monagas M.Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts.J Agric Food Chem2012;60:7142-51

[45]

Fan Y.Gut microbiota in human metabolic health and disease.Nat Rev Microbiol2021;19:55-71

[46]

de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights.Gut2022;71:1020-32 PMCID:PMC8995832

[47]

Firrman J,Tanes C.Metabolic analysis of regionally distinct gut microbial communities using an in vitro platform.J Agric Food Chem2020;68:13056-67

[48]

Lessard-Lord J,Roussel C.Mathematical modeling of fluid dynamics in in vitro gut fermentation systems: a new tool to improve the interpretation of microbial metabolism.FASEB J2024;38:e23398

[49]

Cheng H,Wu J.Interactions between gut microbiota and polyphenols: a mechanistic and metabolomic review.Phytomedicine2023;119:154979

[50]

Louis P.Formation of propionate and butyrate by the human colonic microbiota.Environ Microbiol2017;19:29-41

[51]

Hotchkiss AT Jr,White AK.Cranberry arabino-xyloglucan and pectic oligosaccharides induce lactobacillus growth and short-chain fatty acid production.Microorganisms2022;10:1346 PMCID:PMC9319371

[52]

Rivière A,Lantin D,De Vuyst L.Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut.Front Microbiol2016;7:979 PMCID:PMC4923077

[53]

Belenguer A,Calder AG.Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut.Appl Environ Microbiol2006;72:3593-9 PMCID:PMC1472403

[54]

Rios-Covian D,Duncan SH,de los Reyes-Gavilan CG.Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.FEMS Microbiol Lett2015;362:fnv176

[55]

Moens F,De Vuyst L.Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii.Int J Food Microbiol2016;231:76-85

[56]

Özcan E,Sela DA.Cranberry proanthocyanidins and dietary oligosaccharides synergistically modulate Lactobacillus plantarum physiology.Microorganisms2021;9:656 PMCID:PMC8004764

[57]

Gao C,Montoya L.Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities.Nat Commun2022;13:3867 PMCID:PMC9256619

[58]

Blanchet FG,Gravel D.Co-occurrence is not evidence of ecological interactions.Ecol Lett2020;23:1050-63

[59]

Berry D.Deciphering microbial interactions and detecting keystone species with co-occurrence networks.Front Microbiol2014;5:219 PMCID:PMC4033041

[60]

Weiss AS,von Strempel A.Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community.Nat Commun2023;14:4780 PMCID:PMC10409746

[61]

Tudela H,Saleh M.Next generation microbiome research: identification of keystone species in the metabolic regulation of host-gut microbiota interplay.Front Cell Dev Biol2021;9:719072 PMCID:PMC8440917

[62]

Wortelboer K,Herrema H,Nieuwdorp M.From fecal microbiota transplantation toward next-generation beneficial microbes: the case of Anaerobutyricum soehngenii.Front Med2022;9:1077275 PMCID:PMC9760881

[63]

Tourlousse DM,Miura T.Complete genome sequence of Flavonifractor plautii JCM 32125T.Microbiol Resour Announc2020;9:e00135-20 PMCID:PMC7180276

[64]

Mikami A,Namai F,Sato T.Oral administration of Flavonifractor plautii, a bacteria increased with green tea consumption, promotes recovery from acute colitis in mice via suppression of IL-17.Front Nutr2020;7:610946 PMCID:PMC7890079

[65]

Ogita T,Mikami A,Sato T.Oral administration of Flavonifractor plautii strongly suppresses Th2 immune responses in mice.Front Immunol2020;11:379 PMCID:PMC7058663

[66]

Mikami A,Namai F,Sato T.Oral administration of Flavonifractor plautii attenuates inflammatory responses in obese adipose tissue.Mol Biol Rep2020;47:6717-25

[67]

El Hage R, Hernandez-Sanabria E, Calatayud Arroyo M, Props R, Van de Wiele T. Propionate-producing consortium restores antibiotic-induced dysbiosis in a dynamic in vitro model of the human intestinal microbial ecosystem.Front Microbiol2019;10:1206 PMCID:PMC6554338

[68]

Yoshida N,Yamashita T.Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis.Circulation2018;138:2486-98

[69]

Kumari M,Nataraj BH.Fostering next-generation probiotics in human gut by targeted dietary modulation: an emerging perspective.Food Res Int2021;150:110716

[70]

Belzer C,Aalvink S.Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts.mBio2017;8:e00770-17 PMCID:PMC5605934

[71]

Perraudeau F,Bullard J.Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation.BMJ Open Diabetes Res Care2020;8:e001319 PMCID:PMC7368581

[72]

Cani PD,Derrien M,de Vos WM.Author Correction: Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms.Nat Rev Gastroenterol Hepatol2022;19:682

[73]

Daniel N,Chassaing B.Akkermansia muciniphila counteracts the deleterious effects of dietary emulsifiers on microbiota and host metabolism.Gut2023;72:906-17 PMCID:PMC10086484

[74]

Bui TPN,Lagkouvardos I.Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens.Environ Microbiol Rep2016;8:1024-37

[75]

Bui TPN,Nijsse B,Fogliano V.Intestinimonas-like bacteria are important butyrate producers that utilize Nε-fructosyllysine and lysine in formula-fed infants and adults.J Funct Foods2020;70:103974

[76]

Ahn S,Chang DH.Agathobaculum butyriciproducens gen. nov.  sp. nov., a strict anaerobic, butyrate-producing gut bacterium isolated from human faeces and reclassification of Eubacterium desmolans as Agathobaculum desmolans comb. nov.Int J Syst Evol Microbiol2016;66:3656-61

[77]

Song L.Hydrogenoanaerobacterium saccharovorans gen. nov., sp. nov., isolated from H2-producing UASB granules.Int J Syst Evol Microbiol2009;59:295-9

[78]

Huang X,Tomita T,Miwa H.Butyrate alleviates cytokine-induced barrier dysfunction by modifying claudin-2 levels.Biology2021;10:205 PMCID:PMC8000923

[79]

Daniel N,Chassaing B.Host/microbiota interactions in health and diseases - time for mucosal microbiology!.Mucosal Immunol2021;14:1006-16 PMCID:PMC8379076

[80]

Etienne-Mesmin L,Desvaux M.Experimental models to study intestinal microbes-mucus interactions in health and disease.FEMS Microbiol Rev2019;43:457-89

[81]

Sicard JF,Vogeleer P,Harel J.Interactions of intestinal bacteria with components of the intestinal mucus.Front Cell Infect Microbiol2017;7:387 PMCID:PMC5591952

[82]

Sevrin G,Chassaing B.Adaptation of adherent-invasive E. coli to gut environment: impact on flagellum expression and bacterial colonization ability.Gut Microbes2020;11:364-80 PMCID:PMC7524368

[83]

Loo YT,Chan M,Ng K.Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods.Compr Rev Food Sci Food Saf2020;19:1268-98

[84]

Gutierrez A,Engevik MA.Bifidobacterium and the intestinal mucus layer.Microbiome Res Rep2023;2:36 PMCID:PMC10688832

[85]

Monteagudo-Mera A,Gibson GR,Chatzifragkou A.Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health.Appl Microbiol Biotechnol2019;103:6463-72 PMCID:PMC6667406

[86]

Zhang D,De Medts J.A cranberry concentrate decreases adhesion and invasion of Escherichia coli (AIEC) LF82 in vitro.Pathogens2021;10:1217 PMCID:PMC8471079

[87]

Duranti S,Lugli GA.Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis.Sci Rep2016;6:23971 PMCID:PMC4817515

[88]

Mulualem DM,Ogilvie LA.Metagenomic identification, purification and characterisation of the Bifidobacterium adolescentis BgaC β-galactosidase.Appl Microbiol Biotechnol2021;105:1063-78 PMCID:PMC7843569

[89]

Yu R,Ma H.Exopolysaccharide-producing Bifidobacterium adolescentis strains with similar adhesion property induce differential regulation of inflammatory immune response in Treg/Th17 axis of DSS-colitis mice.Nutrients2019;11:782 PMCID:PMC6520857

[90]

Fan L,Qu S.B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling.Gut Microbes2021;13:1-17 PMCID:PMC7889144

[91]

Lin Y,Qi Y.Bifidobacterium adolescentis induces Decorin+ macrophages via TLR2 to suppress colorectal carcinogenesis.J Exp Clin Cancer Res2023;42:172 PMCID:PMC10353206

[92]

Wang B,Cui S.Bifidobacterium adolescentis isolated from different hosts modifies the intestinal microbiota and displays differential metabolic and immunomodulatory properties in mice fed a high-fat diet.Nutrients2021;13:1017 PMCID:PMC8004121

[93]

Qian X,Lin G.Bifidobacterium adolescentis is effective in relieving type 2 diabetes and may be related to its dominant core genome and gut microbiota modulation capacity.Nutrients2022;14:2479 PMCID:PMC9227778

[94]

Botta C,Greppi A.Genomic assessment in Lactobacillus plantarum links the butyrogenic pathway with glutamine metabolism.Sci Rep2017;7:15975 PMCID:PMC5698307

[95]

Aiello A,De Luca L.Production of butyric acid by different strains of Lactobacillus plantarum (Lactiplantibacillus plantarum).Int Dairy J2023;140:105589

[96]

Barroso E,Jiménez-Girón A.Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols.Appl Microbiol Biotechnol2014;98:6805-15

AI Summary AI Mindmap
PDF

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/