Faecalibacterium prausnitzii A2-165 metabolizes host- and media-derived chemicals and induces transcriptional changes in colonic epithelium in GuMI human gut microphysiological system
Yu-Ja Huang , Caroline A. Lewis , Charles Wright , Kirsten Schneider , John Kemmitt , David L. Trumper , David T. Breault , Omer Yilmaz , Linda G. Griffith , Jianbo Zhang
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) : 30
Faecalibacterium prausnitzii A2-165 metabolizes host- and media-derived chemicals and induces transcriptional changes in colonic epithelium in GuMI human gut microphysiological system
Aim: Recently, a GuMI gut microphysiological system has been established to coculture oxygen-intolerant Faecalibacterium prausnitzii (F. prausnitzii) A2-165 with organoids-derived primary human colonic epithelium. This study aims to test if this GuMI system applies to different donors with different healthy states and uses metabolomics to reveal the role of gut microbes in modulating host- and diet-derived molecules in the gut lumen.
Methods: Organoids-derived colonic monolayers were generated from an uninflamed region of diverticulitis, ulcerative colitis, and Crohn’s disease patients and then integrated into the GuMI system to coculture with
Results: GuMI successfully cocultured patient-derived monolayers and F. prausnitzii for up to 4 days, with active bacterial growth. Introducing flow and oxygen gradient significantly increases the barrier function, while exposure to F. prausnitzii slightly increases the barrier function. Targeted metabolomics screened 169 compounds and detected 76 metabolites, of which 70 significantly differed between at least two conditions. F. prausnitzii significantly modulates the levels of nucleosides, nucleobases, and amino acids on the apical side. Further analysis suggests that F. prausnitzii changes the mRNA level of 260 transcription factor genes in colonic epithelial cells.
Conclusion: The GuMI physiomimetic system can maintain the coculture of F. prausnitzii and colonic epithelium from different donors. Together with metabolomics, we identified the modulation of F. prausnitzii in extracellular chemicals and colonic epithelial cell transcription in coculture with human colonic epithelium, which may reflect its function in gut lumen in vivo.
Faecalibacterium prausnitzii A2-165 / colonic epithelium / metabolomics / microphysiological system / host-microbe interaction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Qin J, Li R, Raes J, et al; MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65. PMCID:PMC3779803 |
| [8] |
De Filippis F, Pasolli E, Ercolini D. Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease.Curr Biol2020;30:4932-43.e4 |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
de Klerk N, Saroj SD, Wassing GM, Maudsdotter L, Jonsson AB. The host cell transcription factor EGR1 is induced by bacteria through the EGFR-ERK1/2 pathway.Front Cell Infect Microbiol2017;7:16 PMCID:PMC5264520 |
| [34] |
|
| [35] |
|
/
| 〈 |
|
〉 |