Faecalibacterium prausnitzii A2-165 metabolizes host- and media-derived chemicals and induces transcriptional changes in colonic epithelium in GuMI human gut microphysiological system

Yu-Ja Huang , Caroline A. Lewis , Charles Wright , Kirsten Schneider , John Kemmitt , David L. Trumper , David T. Breault , Omer Yilmaz , Linda G. Griffith , Jianbo Zhang

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) : 30

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) :30 DOI: 10.20517/mrr.2024.14
Short Report

Faecalibacterium prausnitzii A2-165 metabolizes host- and media-derived chemicals and induces transcriptional changes in colonic epithelium in GuMI human gut microphysiological system

Author information +
History +
PDF

Abstract

Aim: Recently, a GuMI gut microphysiological system has been established to coculture oxygen-intolerant Faecalibacterium prausnitzii (F. prausnitzii) A2-165 with organoids-derived primary human colonic epithelium. This study aims to test if this GuMI system applies to different donors with different healthy states and uses metabolomics to reveal the role of gut microbes in modulating host- and diet-derived molecules in the gut lumen.

Methods: Organoids-derived colonic monolayers were generated from an uninflamed region of diverticulitis, ulcerative colitis, and Crohn’s disease patients and then integrated into the GuMI system to coculture with F. prausnitzii A2-165 for 2 to 4 days. Apical media was collected for metabolomic analysis. Targeted metabolomics was performed to profile 169 polar chemicals under three conditions: conventional static culture without bacteria, GuMI without bacteria, and GuMI with F. prausnitzii. The barrier function of monolayers was measured using transepithelial resistance.

Results: GuMI successfully cocultured patient-derived monolayers and F. prausnitzii for up to 4 days, with active bacterial growth. Introducing flow and oxygen gradient significantly increases the barrier function, while exposure to F. prausnitzii slightly increases the barrier function. Targeted metabolomics screened 169 compounds and detected 76 metabolites, of which 70 significantly differed between at least two conditions. F. prausnitzii significantly modulates the levels of nucleosides, nucleobases, and amino acids on the apical side. Further analysis suggests that F. prausnitzii changes the mRNA level of 260 transcription factor genes in colonic epithelial cells.

Conclusion: The GuMI physiomimetic system can maintain the coculture of F. prausnitzii and colonic epithelium from different donors. Together with metabolomics, we identified the modulation of F. prausnitzii in extracellular chemicals and colonic epithelial cell transcription in coculture with human colonic epithelium, which may reflect its function in gut lumen in vivo.

Keywords

Faecalibacterium prausnitzii A2-165 / colonic epithelium / metabolomics / microphysiological system / host-microbe interaction

Cite this article

Download citation ▾
Yu-Ja Huang, Caroline A. Lewis, Charles Wright, Kirsten Schneider, John Kemmitt, David L. Trumper, David T. Breault, Omer Yilmaz, Linda G. Griffith, Jianbo Zhang. Faecalibacterium prausnitzii A2-165 metabolizes host- and media-derived chemicals and induces transcriptional changes in colonic epithelium in GuMI human gut microphysiological system. Microbiome Research Reports, 2024, 3(3): 30 DOI:10.20517/mrr.2024.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Paik D,Zhang Y.Human gut bacteria produce ΤΗ17-modulating bile acid metabolites.Nature2022;603:907-12 PMCID:PMC9132548

[2]

Guo CJ,Hiam KJ.Depletion of microbiome-derived molecules in the host using Clostridium genetics.Science2019;366:eaav1282 PMCID:PMC7141153

[3]

Chang FY,Laurent S.Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids.Nat Microbiol2021;6:792-805

[4]

Zhang J,Schwab C.Gut microbial transformation of the dietary imidazoquinoxaline mutagen MelQx reduces its cytotoxic and mutagenic potency.Toxicol Sci2017;159:266-76 PMCID:PMC5837702

[5]

Zhang J,Wortmann E.Gut microbial beta-glucuronidase and glycerol/diol dehydratase activity contribute to dietary heterocyclic amine biotransformation.BMC Microbiol2019;19:99 PMCID:PMC6524314

[6]

Duncan SH,Harmsen HJM,Flint HJ.Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov.Int J Syst Evol Microbiol2002;52:2141-6

[7]

Qin J, Li R, Raes J, et al; MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65. PMCID:PMC3779803

[8]

De Filippis F, Pasolli E, Ercolini D. Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease.Curr Biol2020;30:4932-43.e4

[9]

Sokol H,Watterlot L.Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients.Proc Natl Acad Sci U S A2008;105:16731-6 PMCID:PMC2575488

[10]

Quévrain E,Michon C.Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease.Gut2016;65:415-25 PMCID:PMC5136800

[11]

Lenoir M,Torres-Maravilla E.Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3.Gut Microbes2020;12:1-16 PMCID:PMC7567499

[12]

Martín R,Huillet E.Faecalibacterium: a bacterial genus with promising human health applications.FEMS Microbiol Rev2023;47:fuad039 PMCID:PMC10410495

[13]

Miquel S,Martin R.Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii.mBio2015;6:e00300-15 PMCID:PMC4453580

[14]

Heinken A,Paglia G,Harmsen HJ.Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe.J Bacteriol2014;196:3289-302 PMCID:PMC4135701

[15]

Zhang J,Yoon JY.Primary human colonic mucosal barrier crosstalk with super oxygen-sensitive Faecalibacterium prausnitzii in continuous culture.Med2021;2:74-98.e9 PMCID:PMC7839961

[16]

Zhang J,Trapecar M.An immune-competent human gut microphysiological system enables inflammation-modulation by Faecalibacterium prausnitzii.NPJ Biofilms Microbiomes2024;10:31 PMCID:PMC10980819

[17]

Fofanova TY,Auchtung JM.A novel human enteroid-anaerobe co-culture system to study microbial-host interaction under physiological hypoxia.BioRxiv2019;555755

[18]

Shin W,Massidda MW.A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip.Front Bioeng Biotechnol2019;7:13 PMCID:PMC6374617

[19]

Sakamoto M,Tanno H,Ohkuma M.Genome-based, phenotypic and chemotaxonomic classification of Faecalibacterium strains: proposal of three novel species Faecalibacterium duncaniae sp. nov., Faecalibacterium hattorii sp. nov. and Faecalibacterium gallinarum sp. nov.Int J Syst Evol Microbiol2022;72:005379

[20]

Zhang J,Trapecar M.Coculture of primary human colon monolayer with human gut bacteria.Nat Protoc2021;16:3874-900 PMCID:PMC9109719

[21]

Pang Z,Ewald J.Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data.Nat Protoc2022;17:1735-61

[22]

Lambert SA,Campitelli LF.The human transcription factors.Cell2018;172:650-65

[23]

Matys V,Fricke E.TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes.Nucleic Acids Res2006;34:D108-10 PMCID:PMC1347505

[24]

Sadaghian Sadabad M,Khan MT.A simple coculture system shows mutualism between anaerobic faecalibacteria and epithelial Caco-2 cells.Sci Rep2015;5:17906 PMCID:PMC4678368

[25]

Wu D,Zhang Y.Proline uptake promotes activation of lymphoid tissue inducer cells to maintain gut homeostasis.Nat Metab2023;5:1953-68

[26]

Poyet M,Gibbons SM.A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research.Nat Med2019;25:1442-52

[27]

Bjerrum JT,Hao F.Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals.Metabolomics2015;11:122-33 PMCID:PMC4289537

[28]

Le Gall G,Ridgway K.Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome.J Proteome Res2011;10:4208-18

[29]

Honda K,Negishi H.IRF-7 is the master regulator of type-I interferon-dependent immune responses.Nature2005;434:772-7

[30]

Jefferies CA.Regulating IRFs in IFN driven disease.Front Immunol2019;10:325 PMCID:PMC6449421

[31]

Lukovac S,Pellis L.Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids.mBio2014;5:e01438-14 PMCID:PMC4145684

[32]

Caballero-Flores G,Núñez G.Microbiota-mediated colonization resistance: mechanisms and regulation.Nat Rev Microbiol2023;21:347-60 PMCID:PMC10249723

[33]

de Klerk N, Saroj SD, Wassing GM, Maudsdotter L, Jonsson AB. The host cell transcription factor EGR1 is induced by bacteria through the EGFR-ERK1/2 pathway.Front Cell Infect Microbiol2017;7:16 PMCID:PMC5264520

[34]

Woo V.Epigenetic regulation by gut microbiota.Gut Microbes2022;14:2022407 PMCID:PMC8744890

[35]

Colosimo DA,Luo PM.Mapping interactions of microbial metabolites with human G-protein-coupled receptors.Cell Host Microbe2019;26:273-82.e7 PMCID:PMC6706627

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/