Omics-based analysis of Akkermansia muciniphila cultivation in food-grade media

Sharon Y. Geerlings , Kees van der Ark , Bart Nijsse , Sjef Boeren , Mark van Loosdrecht , Clara Belzer , Willem M. de Vos

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) : 36

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) :36 DOI: 10.20517/mrr.2024.06
Original Article

Omics-based analysis of Akkermansia muciniphila cultivation in food-grade media

Author information +
History +
PDF

Abstract

Background and Aim: Over the past years, the gut microbiota and its correlation to health and disease has been studied extensively. In terms of beneficial microbes, an increased interest in Akkermansia muciniphila (A. muciniphila) has been observed since its discovery. Direct evidence for the role of A. muciniphila in host health has been provided in both mice and human studies. However, for human interventions with A. muciniphila cells, industrial-scale fermentations are needed, and hence, the used cultivation media should be free of animal-derived components, food-grade, non-allergenic and allow for efficient growth to high densities to provide cost-effective production platforms. In this study, we assessed the growth and performance of A. muciniphila in batch bioreactors using newly developed plant-based media.

Methods: The bioreactors were supplemented with varying carbon sources, including different ratios of N-acetylglucosamine (GlcNAc) and glucose. We monitored the growth of A. muciniphila in the plant-based medium using optical density (OD600) measurements and microscopy. In addition, we used a combination of biochemical analysis as well as transcriptional and proteomics analysis to gain detailed insight into the physiology.

Results: Comparisons between growth on these media and that on mucin revealed differences at both transcriptome and proteome levels, including differences in the expression of glycosyltransferases, signaling proteins, and stress response. Furthermore, elongated cells and higher OD600 values were observed using the plant-based media as compared to cultivation media containing mucin.

Conclusion: These differences do not hamper growth, and therefore, our data suggest that the food-grade medium composition described here could be used to produce A. muciniphila with high yields for therapeutic purposes.

Keywords

A. muciniphila / food-grade medium / human gut microbiota / industrial production

Cite this article

Download citation ▾
Sharon Y. Geerlings, Kees van der Ark, Bart Nijsse, Sjef Boeren, Mark van Loosdrecht, Clara Belzer, Willem M. de Vos. Omics-based analysis of Akkermansia muciniphila cultivation in food-grade media. Microbiome Research Reports, 2024, 3(3): 36 DOI:10.20517/mrr.2024.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights.Gut2022;71:1020-32 PMCID:PMC8995832

[2]

Tims S,Jonkers DM.Microbiota conservation and BMI signatures in adult monozygotic twins.ISME J2013;7:707-17 PMCID:PMC3603393

[3]

Le Chatelier E, Nielsen T, Qin J, et al; MetaHIT consortium. Richness of human gut microbiome correlates with metabolic markers.Nature2013;500:541-6

[4]

Allin KH, Tremaroli V, Caesar R, et al; IMI-DIRECT consortium. Aberrant intestinal microbiota in individuals with prediabetes.Diabetologia2018;61:810-20 PMCID:PMC6448993

[5]

Zhong H,Lu Y.Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics.EBioMedicine2019;47:373-83 PMCID:PMC6796533

[6]

Jiang W,Wang X.Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease.Sci Rep2015;5:8096 PMCID:PMC4314632

[7]

Qin N,Li A.Alterations of the human gut microbiome in liver cirrhosis.Nature2014;513:59-64

[8]

Hanssen NMJ,Nieuwdorp M.Fecal microbiota transplantation in human metabolic diseases: from a murky past to a bright future?.Cell Metab2021;33:1098-110

[9]

Fan Y.Gut microbiota in human metabolic health and disease.Nat Rev Microbiol2021;19:55-71

[10]

Cani PD.Next-generation beneficial microbes: the case of Akkermansia muciniphila.Front Microbiol2017;8:1765 PMCID:PMC5614963

[11]

Bui TPN.Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases.Best Pract Res Clin Endocrinol Metab2021;35:101504

[12]

Derrien M,Plugge CM.Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium.Int J Syst Evol Microbiol2004;54:1469-76

[13]

Geerlings SY,de Vos WM.Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how?.Microorganisms2018;6:75 PMCID:PMC6163243

[14]

Cani PD,Derrien M,de Vos WM.Author Correction: Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms.Nat Rev Gastroenterol Hepatol2022;19:682

[15]

Belzer C.Microbes inside - from diversity to function: the case of Akkermansia.ISME J2012;6:1449-58 PMCID:PMC3401025

[16]

Dao MC, Everard A, Aron-Wisnewsky J, et al; MICRO-Obes Consortium. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology.Gut2016;65:426-36

[17]

Karcher N,Punčochář M.Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly.Genome Biol2021;22:209 PMCID:PMC8278651

[18]

Everard A,Geurts L.Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.Proc Natl Acad Sci U S A2013;110:9066-71 PMCID:PMC3670398

[19]

Wang F,Xiao Q,Xie L.Akkermansia muciniphila administration exacerbated the development of colitis-associated colorectal cancer in mice.J Cancer2022;13:124-33 PMCID:PMC8692691

[20]

Qu S,Qi Y.Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation.Microbiol Spectr2021;9:e0073021 PMCID:PMC8510245

[21]

Bian X,Yang L.Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice.Front Microbiol2019;10:2259 PMCID:PMC6779789

[22]

Yaghoubfar R,Ashrafian F.Modulation of serotonin signaling/metabolism by Akkermansia muciniphila and its extracellular vesicles through the gut-brain axis in mice.Sci Rep2020;10:22119 PMCID:PMC7747642

[23]

Wu F,Zhang M.An Akkermansia muciniphila subtype alleviates high-fat diet-induced metabolic disorders and inhibits the neurodegenerative process in mice.Anaerobe2020;61:102138

[24]

Ottman N,Suarez-Diez M.Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading Lifestyle.Appl Environ Microbiol2017;83:e01014-17 PMCID:PMC5583483

[25]

van der Ark KCH, Aalvink S, Suarez-Diez M, Schaap PJ, de Vos WM, Belzer C. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation.Microb Biotechnol2018;11:476-85 PMCID:PMC5902328

[26]

Plovier H,Druart C.A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice.Nat Med2017;23:107-13

[27]

Depommier C,Druart C.Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study.Nat Med2019;25:1096-103 PMCID:PMC6699990

[28]

van der Ark KCH. Metabolic characterization and viable delivery of Akkermansia muciniphila for its future application. 2018. Available from: https://www.proquest.com/openview/d51699682401c1858ddc78c47dba7bfd/1?pq-origsite=gscholar&cbl=2026366&diss=y. [Last accessed on 13 Jun 2024]

[29]

Chang Y,Xu N,Zhang H.Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate.Int J Biol Macromol2020;159:373-82

[30]

Marcial-Coba MS,Cahú TB,Knøchel S.Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage.Food Funct2018;9:5868-79

[31]

Marcial-Coba MS,Knøchel S.Dark chocolate as a stable carrier of microencapsulated Akkermansia muciniphila and Lactobacillus casei.FEMS Microbiol Lett2019;366:fny290

[32]

Ouwerkerk JP,Davids M.Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer.Appl Environ Microbiol2016;82:6983-93 PMCID:PMC5103097

[33]

Hagi T,Nijsse B.The effect of bile acids on the growth and global gene expression profiles in Akkermansia muciniphila.Appl Microbiol Biotechnol2020;104:10641-53 PMCID:PMC7671984

[34]

Ottman N,Reunanen J.Characterization of outer membrane proteome of Akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine.Front Microbiol2016;7:1157 PMCID:PMC4960237

[35]

Ottman N,Meijerink M.Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function.PLoS One2017;12:e0173004 PMCID:PMC5332112

[36]

Yoon HS,Yun MS.Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice.Nat Microbiol2021;6:563-73

[37]

Meng X,Wu H,Fang X.Akkermansia muciniphila Aspartic Protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway.Int J Mol Sci2020;21:3385 PMCID:PMC7246985

[38]

Qian K,Wang J,Wang Y.A β-N-acetylhexosaminidase Amuc_2109 from Akkermansia muciniphila protects against dextran sulfate sodium-induced colitis in mice by enhancing intestinal barrier and modulating gut microbiota.Food Funct2022;13:2216-27

[39]

Segers A.Mode of action of Akkermansia muciniphila in the intestinal dialogue: role of extracellular proteins, metabolites and cell envelope components.Microbiome Res Rep2023;2:6 PMCID:PMC10688800

[40]

Druart C,Van Hul M.Toxicological safety evaluation of pasteurized Akkermansia muciniphila.J Appl Toxicol2021;41:276-90 PMCID:PMC7818173

[41]

Turck D, Bohn T, Castenmiller J, et al; EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA). Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283.EFSA J2021;19:e06780 PMCID:PMC8409316

[42]

Geerlings SY. A rising star: a comprehensive approach to Akkermansia muciniphila ecosystems, interactions and applications. 2023. Available from: https://research.wur.nl/en/publications/a-rising-star-a-comprehensive-approach-to-akkermansia-muciniphila. [Last accessed on 13 Jun 2024]

[43]

Plugge CM.Anoxic media design, preparation, and considerations.Methods Enzymol2005;397:3-16

[44]

Shetty SA,Geerlings SY,de Vos WM.Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties.ISME J2022;16:2144-59 PMCID:PMC9381525

[45]

Chakraborty S,Chakravortty D.Lactoylglutathione lyase, a critical enzyme in methylglyoxal detoxification, contributes to survival of Salmonella in the nutrient rich environment.Virulence2015;6:50-65 PMCID:PMC4603430

[46]

Guthrie B.Trigger factor depletion or overproduction causes defective cell division but does not block protein export.J Bacteriol1990;172:5555-62 PMCID:PMC526866

[47]

Wang J,Wang R,Tang Z.The outer membrane protein Amuc_1100 of Akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling.Food Funct2021;12:3597-610

[48]

Hudek L,Webster WA.Role of phosphate transport system component PstB1 in phosphate internalization by Nostoc punctiforme.Appl Environ Microbiol2016;82:6344-56 PMCID:PMC5066351

[49]

den Besten HM, Arvind A, Gaballo HM, Moezelaar R, Zwietering MH, Abee T. Short- and long-term biomarkers for bacterial robustness: a framework for quantifying correlations between cellular indicators and adaptive behavior.PLoS One2010;5:e13746 PMCID:PMC2966415

[50]

Nguyen PT,Bui DC,Hoang QK.Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications.AIMS Microbiol2020;6:451-69 PMCID:PMC7755584

AI Summary AI Mindmap
PDF

300

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/