Host response to cholestyramine can be mediated by the gut microbiota

Nolan K. Newman , Philip M. Monnier , Richard R. Rodrigues , Manoj Gurung , Stephany Vasquez-Perez , Kaito A. Hioki , Renee L. Greer , Kevin Brown , Andrey Morgun , Natalia Shulzhenko

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (4) : 40

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (4) :40 DOI: 10.20517/mrr.2023.82
Original Article

Host response to cholestyramine can be mediated by the gut microbiota

Author information +
History +
PDF

Abstract

Background: The gut microbiota has been implicated as a major factor contributing to metabolic diseases and the response to drugs used for the treatment of such diseases. In this study, we tested the effect of cholestyramine, a bile acid sequestrant that reduces blood cholesterol, on the murine gut microbiota and metabolism. We also explored the hypothesis that some effects of this drug on systemic metabolism can be attributed to alterations in the gut microbiota.

Methods: We used a Western diet (WD) for 8 weeks to induce metabolic disease in mice, then treated some mice with cholestyramine added to WD. Metabolic phenotyping, gene expression in liver and ileum, and microbiota 16S rRNA genes were analyzed. Then, transkingdom network analysis was used to find candidate microbes for the cholestyramine effect.

Results: We observed that cholestyramine decreased glucose and epididymal fat levels and detected dysregulation of genes known to be regulated by cholestyramine in the liver and ileum. Analysis of gut microbiota showed increased alpha diversity in cholestyramine-treated mice, with fourteen taxa showing restoration of relative abundance to levels resembling those in mice fed a control diet. Using transkingdom network analysis, we inferred two amplicon sequence variants (ASVs), one from the Lachnospiraceae family (ASV49) and the other from the Muribaculaceae family (ASV1), as potential regulators of cholestyramine effects. ASV49 was also negatively linked with glucose levels, further indicating its beneficial role.

Conclusion: Our results indicate that the gut microbiota has a role in the beneficial effects of cholestyramine and suggest specific microbes as targets of future investigations.

Keywords

Microbiome / Lachnospiraceae / Muribaculaceae / cholestyramine / network / hypercholesterolemia

Cite this article

Download citation ▾
Nolan K. Newman, Philip M. Monnier, Richard R. Rodrigues, Manoj Gurung, Stephany Vasquez-Perez, Kaito A. Hioki, Renee L. Greer, Kevin Brown, Andrey Morgun, Natalia Shulzhenko. Host response to cholestyramine can be mediated by the gut microbiota. Microbiome Research Reports, 2024, 3(4): 40 DOI:10.20517/mrr.2023.82

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tsao CW,Almarzooq ZI.Heart disease and stroke statistics-2022 update: a report from the American Heart Association.Circulation2022;145:e153-639

[2]

Masana L,Plana N.Incidence of cardiovascular disease in patients with familial hypercholesterolemia phenotype: analysis of 5 years follow-up of real-world data from more than 1.5 million patients.J Clin Med2019;8:1080 PMCID:PMC6678686

[3]

Parhofer KG.Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia.Diabetes Metab J2015;39:353-62 PMCID:PMC4641964

[4]

Khan TJ,Zamzami MA.Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats.Sci Rep2018;8:662 PMCID:PMC5766553

[5]

Scaldaferri F,Ponziani FR,Gasbarrini A.Use and indications of cholestyramine and bile acid sequestrants.Intern Emerg Med2013;8:205-10

[6]

Chen L,Anderson D.Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats.J Pharmacol Exp Ther2010;334:164-70

[7]

Larsson E,Lee YS.Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.Gut2012;61:1124-31 PMCID:PMC3388726

[8]

Rodrigues RR,Dong X.Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice.Front Microbiol2017;8:2306 PMCID:PMC5702803

[9]

Williams RC,Kern F Jr.In vivo effect of bile salts and cholestyramine on intestinal anaerobic bacteria.Gastroenterology1975;69:483-91

[10]

Buffie CG,Stein RR.Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile.Nature2015;517:205-8 PMCID:PMC4354891

[11]

Ridlon JM,Hylemon PB.Bile acids and the gut microbiome.Curr Opin Gastroenterol2014;30:332-8 PMCID:PMC4215539

[12]

Jia W,Jia W.Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis.Nat Rev Gastroenterol Hepatol2018;15:111-28 PMCID:PMC5899973

[13]

Newman NK,Rodrigues RR.Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host-microbiota and other multi-omic interactions.Nat Protoc2024;19:1750-78

[14]

Li Z,Rodrigues RR.Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by Mmp12+ macrophages.J Exp Med2022;219:e20220017 PMCID:PMC9170383

[15]

Newman NK,Padiadpu J.Reducing gut microbiome-driven adipose tissue inflammation alleviates metabolic syndrome.Microbiome2023;11:208 PMCID:PMC10512512

[16]

Morgun A,Dong X.Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks.Gut2015;64:1732-43 PMCID:PMC5166700

[17]

Kong B,Chiang JY,Klaassen CD.Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice.Hepatology2012;56:1034-43 PMCID:PMC3390456

[18]

Nair AB.A simple practice guide for dose conversion between animals and human.J Basic Clin Pharm2016;7:27-31 PMCID:PMC4804402

[19]

Caporaso JG,Walters WA.Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.Proc Natl Acad Sci U S A2011;108:4516-22 PMCID:PMC3063599

[20]

Greer RL,Moraes AC.Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism.Nat Commun2016;7:13329 PMCID:PMC5114536

[21]

Shulzhenko N,Goncalves-Primo A,Morgun A.Selection of control genes for quantitative RT-PCR based on microarray data.Biochem Biophys Res Commun2005;337:306-12

[22]

Øvstebø R,Lande K.PCR-based calibration curves for studies of quantitative gene expression in human monocytes: development and evaluation.Clin Chem2003;49:425-32

[23]

Bolyen E,Dillon MR.Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.Nat Biotechnol2019;37:852-7 PMCID:PMC7015180

[24]

Callahan BJ,Rosen MJ,Johnson AJ.DADA2: high-resolution sample inference from Illumina amplicon data.Nat Methods2016;13:581-3 PMCID:PMC4927377

[25]

McDonald D,Goodrich J.An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.ISME J2012;6:610-8 PMCID:PMC3280142

[26]

Boratyn GM,Cooper PS.BLAST: a more efficient report with usability improvements.Nucleic Acids Res2013;41:W29-33 PMCID:PMC3692093

[27]

Chong J,Zhou G.Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data.Nat Protoc2020;15:799-821

[28]

Dhariwal A,Habib S,Agellon LB.MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data.Nucleic Acids Res2017;45:W180-8 PMCID:PMC5570177

[29]

Yambartsev A,Kovchegov Y.Unexpected links reflect the noise in networks.Biol Direct2016;11:52 PMCID:PMC5480421

[30]

VanderWeele TJ.Signed directed acyclic graphs for causal inference.J R Stat Soc Series B Stat Methodol2010;72:111-27 PMCID:PMC4239133

[31]

Shannon P,Ozier O.Cytoscape: a software environment for integrated models of biomolecular interaction networks.Genome Res2003;13:2498-504 PMCID:PMC403769

[32]

Hagberg A,Schult DA. Exploring network structure, dynamics, and function using NetworkX. Available from: https://www.osti.gov/biblio/960616. [Last accessed on 1 Jul 2024]

[33]

Dong X,Ramsey SA,Shulzhenko N.Reverse enGENEering of regulatory networks from big data: a roadmap for biologists.Bioinform Biol Insights2015;9:61-74 PMCID:PMC4415676

[34]

Thomas LD,Shulzhenko N,Morgun A.Differentially correlated genes in co-expression networks control phenotype transitions.F1000Res2016;5:2740 PMCID:PMC5247791

[35]

Kahalehili HM,Pennington JM.Dietary indole-3-carbinol activates AhR in the gut, alters Th17-microbe interactions, and exacerbates insulitis in NOD mice.Front Immunol2020;11:606441 PMCID:PMC7858653

[36]

McCulloch JA,Rodrigues RR.Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1.Nat Med2022;28:545-56 PMCID:PMC10246505

[37]

Chiang JYL.Bile acid metabolism in liver pathobiology.Gene Expr2018;18:71-87 PMCID:PMC5954621

[38]

Kliewer SA.Bile acids as hormones: the FXR-FGF15/19 pathway.Dig Dis2015;33:327-31 PMCID:PMC4465534

[39]

Greer R,Morgun A.Investigating a holobiont: microbiota perturbations and transkingdom networks.Gut Microbes2016;7:126-35 PMCID:PMC4856449

[40]

Rodrigues RR,Morgun A.Transkingdom networks: a systems biology approach to identify causal members of host-microbiota interactions.Methods Mol Biol2018;1849:227-42 PMCID:PMC6557635

[41]

Garg A.Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial.Ann Intern Med1994;121:416-22

[42]

Bays HE,Truitt KE.Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects.Arch Intern Med2008;168:1975-83

[43]

Fonseca VA,Wang AC,Jones MR.Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy.Diabetes Care2008;31:1479-84 PMCID:PMC2494667

[44]

Kondo K.Colestilan monotherapy significantly improves glycaemic control and LDL cholesterol levels in patients with type 2 diabetes: a randomized double-blind placebo-controlled study.Diabetes Obes Metab2010;12:246-51

[45]

Brønden A,Sonne DP.Glucose-lowering effects and mechanisms of the bile acid-sequestering resin sevelamer.Diabetes Obes Metab2018;20:1623-31

[46]

White JW.Structure of the human glucagon gene.Nucleic Acids Res1986;14:4719-30 PMCID:PMC311486

[47]

Park S,Yue Y.Effects of bile acid modulation by dietary fat, cholecystectomy, and bile acid sequestrant on energy, glucose, and lipid metabolism and gut microbiota in mice.Int J Mol Sci2022;23:5935 PMCID:PMC9180239

[48]

Pfeiffer N,Blaut M,Haller D.Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse.Arch Microbiol2012;194:901-7

[49]

Yamashita H,Ito E.Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats.Biosci Biotechnol Biochem2007;71:1236-43

[50]

Gao Z,Zhang J.Butyrate improves insulin sensitivity and increases energy expenditure in mice.Diabetes2009;58:1509-17 PMCID:PMC2699871

[51]

Khan S.Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin.Chem Biol Interact2016;254:124-34

[52]

Alvaro A,Rosales R.Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids.IUBMB Life2008;60:757-64

[53]

Pathak P,Nichols RG.Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism.Hepatology2018;68:1574-88 PMCID:PMC6111007

[54]

Chiang JYL.Targeting the gut microbiota for treating colitis: is FGF19 a magic bullet?.EBioMedicine2020;55:102754 PMCID:PMC7186575

[55]

Pirozzi C,Opallo N.Palmitoylethanolamide counteracts high-fat diet-induced gut dysfunction by reprogramming microbiota composition and affecting tryptophan metabolism.Front Nutr2023;10:1143004 PMCID:PMC10434518

[56]

Li B,Chen Y.Alterations in microbiota and their metabolites are associated with beneficial effects of bile acid sequestrant on icteric primary biliary Cholangitis.Gut Microbes2021;13:1946366 PMCID:PMC8405155

[57]

Li JY,Lee AA,Zhou SY.Secondary bile acids mediate high-fat diet-induced upregulation of R-spondin 3 and intestinal epithelial proliferation.JCI Insight2022;7:e148309 PMCID:PMC9675439

[58]

Neimark E,Li X.Bile acid-induced negative feedback regulation of the human ileal bile acid transporter.Hepatology2004;40:149-56

[59]

Keely SJ.The farnesoid X receptor: good for BAD.Cell Mol Gastroenterol Hepatol2016;2:725-32 PMCID:PMC5247348

[60]

Zhang Y.Effects of feeding bile acids and a bile acid sequestrant on hepatic bile acid composition in mice.J Lipid Res2010;51:3230-42 PMCID:PMC2952563

[61]

Chiang JYL.Bile acid metabolism and signaling in liver disease and therapy.Liver Res2017;1:3-9 PMCID:PMC5663306

[62]

Chiang JYL.Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis.Liver Res2020;4:47-63 PMCID:PMC8291349

[63]

Sonne DP,Knop FK.Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion.Eur J Endocrinol2014;171:R47-65

[64]

Hirasawa A,Awaji T.Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120.Nat Med2005;11:90-4

[65]

Trabelsi MS,Staels B.Intestinal bile acid receptors are key regulators of glucose homeostasis.Proc Nutr Soc2017;76:192-202

[66]

Caparrós-Martín JA,Ramsay JP.Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism.Microbiome2017;5:95 PMCID:PMC5550934

[67]

Fuchs CD,Mlitz V.Colesevelam attenuates cholestatic liver and bile duct injury in Mdr2-/- mice by modulating composition, signalling and excretion of faecal bile acids.Gut2018;67:1683-91 PMCID:PMC6109278

[68]

Kriaa A,Potiron A.Microbial impact on cholesterol and bile acid metabolism: current status and future prospects.J Lipid Res2019;60:323-32 PMCID:PMC6358303

[69]

Ruiz L,Sánchez B.Bile resistance mechanisms in Lactobacillus and Bifidobacterium.Front Microbiol2013;4:396 PMCID:PMC3872040

[70]

Lagkouvardos I,Hitch TCA.Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family.Microbiome2019;7:28 PMCID:PMC6381624

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/