Past, present, and future of microbiome-based therapies

Pilar Manrique , Ignacio Montero , Marta Fernandez-Gosende , Noelia Martinez , Claudio Hidalgo Cantabrana , David Rios-Covian

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (2) : 23

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (2) :23 DOI: 10.20517/mrr.2023.80
Review

Past, present, and future of microbiome-based therapies

Author information +
History +
PDF

Abstract

Technological advances in studying the human microbiome in depth have enabled the identification of microbial signatures associated with health and disease. This confirms the crucial role of microbiota in maintaining homeostasis and the host health status. Nowadays, there are several ways to modulate the microbiota composition to effectively improve host health; therefore, the development of therapeutic treatments based on the gut microbiota is experiencing rapid growth. In this review, we summarize the influence of the gut microbiota on the development of infectious disease and cancer, which are two of the main targets of microbiome-based therapies currently being developed. We analyze the two-way interaction between the gut microbiota and traditional drugs in order to emphasize the influence of gut microbial composition on drug effectivity and treatment response. We explore the different strategies currently available for modulating this ecosystem to our benefit, ranging from 1st generation intervention strategies to more complex 2nd generation microbiome-based therapies and their regulatory framework. Lastly, we finish with a quick overview of what we believe is the future of these strategies, that is 3rd generation microbiome-based therapies developed with the use of artificial intelligence (AI) algorithms.

Keywords

Microbiome-based therapies / microbiota / LBP / MBP / biological drugs

Cite this article

Download citation ▾
Pilar Manrique, Ignacio Montero, Marta Fernandez-Gosende, Noelia Martinez, Claudio Hidalgo Cantabrana, David Rios-Covian. Past, present, and future of microbiome-based therapies. Microbiome Research Reports, 2024, 3(2): 23 DOI:10.20517/mrr.2023.80

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Teusink B.Modelling strategies for the industrial exploitation of lactic acid bacteria.Nat Rev Microbiol2006;4:46-56

[2]

Zannini E,Coffey A.Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides.Appl Microbiol Biotechnol2016;100:1121-35

[3]

Bron PA.Engineering lactic acid bacteria for increased industrial functionality.Bioeng Bugs2011;2:80-7

[4]

Baeshen MN,Bora RS.Production of biopharmaceuticals in E. coli: current scenario and future perspectives.J Microbiol Biotechnol2015;25:953-62

[5]

Kostic AD,Garrett WS.Exploring host-microbiota interactions in animal models and humans.Genes Dev2013;27:701-18 PMCID:PMC3639412

[6]

Patterson E,Fitzgerald GF,Dinan TG.Gut microbiota, the pharmabiotics they produce and host health.Proc Nutr Soc2014;73:477-89

[7]

Marchesi JR,Fava F.The gut microbiota and host health: a new clinical frontier.Gut2016;65:330-9 PMCID:PMC4752653

[8]

Rinninella E,Cintoni M.What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases.Microorganisms2019;7:14 PMCID:PMC6351938

[9]

Cheng L,Zhuang H,Zhang X.gutMDisorder: a comprehensive database for dysbiosis of the gut microbiota in disorders and interventions.Nucleic Acids Res2020;48:7603 PMCID:PMC7367202

[10]

Carding S,Vipond DT,Owen LJ.Dysbiosis of the gut microbiota in disease.Microb Ecol Health Dis2015;26:26191 PMCID:PMC4315779

[11]

Wilkins LJ,Miller AW.Defining dysbiosis for a cluster of chronic diseases.Sci Rep2019;9:12918 PMCID:PMC6733864

[12]

Green JE,Berk M.Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: a systematic review and meta-analysis.Gut Microbes2020;12:1-25 PMCID:PMC7757860

[13]

Mehta P,Brunetti L.Acid suppression medications during hospitalization as a risk factor for recurrence of Clostridioides difficile infection: systematic review and meta-analysis.Clin Infect Dis2021;73:e62-8 PMCID:PMC8246810

[14]

Sorbara MT.Microbiome-based therapeutics.Nat Rev Microbiol2022;20:365-80

[15]

Alam MZ,Abt MC.Immunological consequences of microbiome-based therapeutics.Front Immunol2023;13:1046472 PMCID:PMC9878555

[16]

Gulliver EL,Chonwerawong M.Review article: the future of microbiome-based therapeutics.Aliment Pharmacol Ther2022;56:192-208 PMCID:PMC9322325

[17]

Manrique P,Young MJ.The human gut phage community and its implications for health and disease.Viruses2017;9:141 PMCID:PMC5490818

[18]

Hou K,Chen XY.Microbiota in health and diseases.Signal Transduct Target Ther2022;7:135 PMCID:PMC9034083

[19]

Miller CP,Rifkind D.The effect of an antibiotic on the susceptibility of the mouse’s intestinal tract to salmonella infection.Trans Am Clin Climatol Assoc1956;68:51-5; discussion 55-8

[20]

Maciel-Fiuza MF,Campos DMS.Role of gut microbiota in infectious and inflammatory diseases.Front Microbiol2023;14:1098386 PMCID:PMC10083300

[21]

Liu P,Li R.Use of probiotic lactobacilli in the treatment of vaginal infections: in vitro and in vivo investigations.Front Cell Infect Microbiol2023;13:1153894 PMCID:PMC10106725

[22]

Lev-Sagie A,Cohen Y.Vaginal microbiome transplantation in women with intractable bacterial vaginosis.Nat Med2019;25:1500-4

[23]

Lu Y,Wang M.Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies.J Hematol Oncol2022;15:47 PMCID:PMC9052532

[24]

Jain T,Are AC,Dudeja V.New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries.Front Immunol2021;12:622064 PMCID:PMC7940198

[25]

Ağagündüz D,Cemali Ö.Understanding the role of the gut microbiome in gastrointestinal cancer: a review.Front Pharmacol2023;14:1130562 PMCID:PMC9903080

[26]

Vétizou M,Daillère R.Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.Science2015;350:1079-84 PMCID:PMC4721659

[27]

Hamada K,Hirasawa Y.Antibiotic usage reduced overall survival by over 70% in non-small cell lung cancer patients on anti-PD-1 immunotherapy.Anticancer Res2021;41:4985-93

[28]

Davar D,McCulloch JA.Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients.Science2021;371:595-602 PMCID:PMC8097968

[29]

Baruch EN,Ben-Betzalel G.Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients.Science2021;371:602-9

[30]

Sivan A,Hubert N.Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.Science2015;350:1084-9 PMCID:PMC4873287

[31]

Routy B,Miller WH Jr.Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial.Nat Med2023;29:2121-32

[32]

Tanoue T,Plichta DR.A defined commensal consortium elicits CD8 T cells and anti-cancer immunity.Nature2019;565:600-5

[33]

Scheline RR.Drug metabolism by intestinal microorganisms.J Pharm Sci1968;57:2021-37

[34]

Weersma RK,Fu J.Interaction between drugs and the gut microbiome.Gut2020;69:1510-9 PMCID:PMC7398478

[35]

Doestzada M,Zhernakova A.Pharmacomicrobiomics: a novel route towards personalized medicine?.Protein Cell2018;9:432-45 PMCID:PMC5960471

[36]

Zimmermann M,Wegmann R.Mapping human microbiome drug metabolism by gut bacteria and their genes.Nature2019;570:462-7 PMCID:PMC6597290

[37]

Lima S,Jin W.The gut microbiome regulates efficacy of sulfasalazine therapy for spondyloarthritis in inflammatory bowel disease.Inflamm Bowel Dis2023;29:S72-3

[38]

Wu H,Tremaroli V.Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug.Nat Med2017;23:850-8

[39]

Ahmadi S,Nagpal R.Metformin reduces aging-related leaky gut and improves cognitive function by beneficially modulating gut microbiome/goblet cell/mucin axis.J Gerontol A Biol Sci Med Sci2020;75:e9-21 PMCID:PMC7302182

[40]

Zhu X,Feng S.Akkermansia muciniphila, which is enriched in the gut microbiota by metformin, improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6.Microbiome2023;11:120 PMCID:PMC10228018

[41]

Ting NLN,Yu J.Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes.Gut2022;71:1412-25 PMCID:PMC9185832

[42]

Haiser HJ,Balskus EP.Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics.Gut Microbes2014;5:233-8 PMCID:PMC4063850

[43]

Dobkin JF,Butler VPB Jr,Lindenbaum J.Digoxin-inactivating bacteria: identification in human gut flora.Science1983;220:325-7

[44]

Rekdal VM, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism.Science2019;364:eaau6323 PMCID:PMC7745125

[45]

Zhang Y,Mo C.Association between microbial tyrosine decarboxylase gene and levodopa responsiveness in patients with Parkinson disease.Neurology2022;99:e2443-53

[46]

Geller LT,Danino T.Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine.Science2017;357:1156-60

[47]

Luo Y.Connecting the dots: targeting the microbiome in drug toxicity.Med Res Rev2022;42:83-111

[48]

Mahdy MS,Dishisha T.Irinotecan-gut microbiota interactions and the capability of probiotics to mitigate Irinotecan-associated toxicity.BMC Microbiol2023;23:53 PMCID:PMC9979425

[49]

Chamseddine AN,Armand JP.Intestinal bacterial β-glucuronidase as a possible predictive biomarker of irinotecan-induced diarrhea severity.Pharmacol Ther2019;199:1-15

[50]

Parvez MM,Jariwala PB.Quantitative investigation of Irinotecan metabolism, transport, and gut microbiome activation.Drug Metab Dispos2021;49:683-93 PMCID:PMC8407663

[51]

Takeno S.Involvement of the intestinal microflora in nitrazepam-induced teratogenicity in rats and its relationship to nitroreduction.Teratology1991;44:209-14

[52]

Konishi K,Gotoh S.Identification of enzymes responsible for nitrazepam metabolism and toxicity in human.Biochem Pharmacol2017;140:150-60

[53]

Alexander JL,Teare J,Nicholson JK.Gut microbiota modulation of chemotherapy efficacy and toxicity.Nat Rev Gastroenterol Hepatol2017;14:356-65

[54]

Pinto-Cardoso S,Reyes-Terán G.Impact of antiretroviral drugs on the microbiome: unknown answers to important questions.Curr Opin HIV AIDS2018;13:53-60 PMCID:PMC5718259

[55]

Rueda-Ruzafa L,Cardona D.Opioid system influences gut-brain axis: dysbiosis and related alterations.Pharmacol Res2020;159:104928

[56]

Meng J,Ma J.Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner.PLoS One2013;8:e54040 PMCID:PMC3548814

[57]

Iida N,Stewart CA.Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment.Science2013;342:967-70 PMCID:PMC6709532

[58]

Derosa L,Fidelle M.Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients.Eur Urol2020;78:195-206

[59]

Kennedy K,Ramnath N.The lung microbiome in carcinogenesis and immunotherapy treatment.Cancer J2023;29:61-9

[60]

Wei L,Xian CJ.Chemotherapy-induced intestinal microbiota dysbiosis impairs mucosal homeostasis by modulating toll-like receptor signaling pathways.Int J Mol Sci2021;22:9474 PMCID:PMC8431669

[61]

Le Bastard Q,Sidiropoulos D.Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice.Sci Rep2018;8:6219 PMCID:PMC5906603

[62]

Dubin K,Ren B.Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis.Nat Commun2016;7:10391 PMCID:PMC4740747

[63]

van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids.Trends Microbiol2021;29:700-12

[64]

Rios-Covián D,Margolles A,de los Reyes-Gavilán CG.Intestinal short chain fatty acids and their link with diet and human health.Front Microbiol2016;7:185 PMCID:PMC4756104

[65]

Corrêa-Oliveira R,Vieira A,Vinolo MAR.Regulation of immune cell function by short-chain fatty acids.Clin Transl Immunology2016;5:e73 PMCID:PMC4855267

[66]

Petrosino JF.The microbiome in precision medicine: the way forward.Genome Med2018;10:12 PMCID:PMC5824491

[67]

Ke W,Yao CH.Dietary serine-microbiota interaction enhances chemotherapeutic toxicity without altering drug conversion.Nat Commun2020;11:2587 PMCID:PMC7244588

[68]

Patangia DV,Dempsey E,Stanton C.Impact of antibiotics on the human microbiome and consequences for host health.Microbiologyopen2022;11:e1260 PMCID:PMC8756738

[69]

Becattini S,Pamer EG.Antibiotic-induced changes in the intestinal microbiota and disease.Trends Mol Med2016;22:458-78 PMCID:PMC4885777

[70]

Nagata N,Miyoshi-Akiyama T.Population-level metagenomics uncovers distinct effects of multiple medications on the human gut microbiome.Gastroenterology2022;163:1038-52

[71]

Zmora N,Korem T,Elinav E.Taking it personally: personalized utilization of the human microbiome in health and disease.Cell Host Microbe2016;19:12-20

[72]

Wagenaar CA,Bisschops M.The effect of dietary interventions on chronic inflammatory diseases in relation to the microbiome: a systematic review.Nutrients2021;13:3208 PMCID:PMC8464906

[73]

De Filippis F, Vitaglione P, Cuomo R, Berni Canani R, Ercolini D. Dietary interventions to modulate the gut microbiome - how far away are we from precision medicine.Inflamm Bowel Dis2018;24:2142-54

[74]

Houghton D,Stewart C.Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes.Diabetologia2018;61:1700-11 PMCID:PMC6061157

[75]

Wang LS,Huang YW.Effects of dietary interventions on gut microbiota in humans and the possible impacts of foods on patients’ responses to cancer immunotherapy.eFood2020;1:279-87 PMCID:PMC8301224

[76]

Chrysostomou D,Marchesi JR.Gut microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy.Gastroenterology2023;164:198-213

[77]

Davis C,Hodgson J.Definition of the mediterranean diet; a literature review.Nutrients2015;7:9139-53 PMCID:PMC4663587

[78]

Compher CW.Fruits, vegetables, and whole grains win again.Am J Clin Nutr2021;114:420-1

[79]

Galgano F,Tolve R.Strategies for producing low FODMAPs foodstuffs: challenges and perspectives.Foods2023;12:856 PMCID:PMC9956220

[80]

Paoli A,Bianco A,Mota JF.Ketogenic diet and microbiota: friends or enemies?.Genes2019;10:534 PMCID:PMC6678592

[81]

Ghosh TS,Jeffery IB.Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries.Gut2020;69:1218-28 PMCID:PMC7306987

[82]

Horn J,Chen S.Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders.Transl Psychiatry2022;12:164 PMCID:PMC9021202

[83]

Klimenko NS,Revel-Muroz A.The hallmarks of dietary intervention-resilient gut microbiome.NPJ Biofilms Microbiomes2022;8:77 PMCID:PMC9547895

[84]

Leeming ER,Spector TD.Effect of diet on the gut microbiota: rethinking intervention duration.Nutrients2019;11:2862 PMCID:PMC6950569

[85]

Bourdeau-Julien I,Rochefort G.The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population.Microbiome2023;11:26. PMCID:PMC9921707

[86]

Gibson GR,Sanders ME.Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat Rev Gastroenterol Hepatol2017;14:491-502

[87]

Bindels LB,Cani PD.Towards a more comprehensive concept for prebiotics.Nat Rev Gastroenterol Hepatol2015;12:303-10

[88]

Davani-Davari D,Karimzadeh I.Prebiotics: definition, types, sources, mechanisms, and clinical applications.Foods2019;8:92 PMCID:PMC6463098

[89]

Rios-Covian D,Duncan SH,de los Reyes-Gavilan CG.Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.FEMS Microbiol Lett2015;362:fnv176

[90]

Roy S.Correction to “Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: current perspectives”.World J Gastroenterol2023;29:5178-9 PMCID:PMC10514759

[91]

Hall DA,Cantu-Jungles TM.An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson’s disease participants.Nat Commun2023;14:926 PMCID:PMC9938693

[92]

Megur A,Baltriukienė D.Prebiotics as a tool for the prevention and treatment of obesity and diabetes: classification and ability to modulate the gut microbiota.Int J Mol Sci2022;23:6097 PMCID:PMC9181475

[93]

Salminen S,Endo A.The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics.Nat Rev Gastroenterol Hepatol2021;18:649-67 PMCID:PMC8387231

[94]

EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis K, Allende A, Alvarez-Ordóñez A, et al. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 18: suitability of taxonomic units notified to EFSA until March 2023. EFSA J 2023;21:e08092.

[95]

Piqué N,Miñana-Galbis D.Health benefits of heat-killed (Tyndallized) probiotics: an overview.Int J Mol Sci2019;20:2534 PMCID:PMC6566317

[96]

Dronkers TMG,Rijkers GT.Global analysis of clinical trials with probiotics.Heliyon2020;6:e04467 PMCID:PMC7371762

[97]

Swanson KS,Hutkins R.The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics.Nat Rev Gastroenterol Hepatol2020;17:687-701 PMCID:PMC7581511

[98]

Gomez Quintero DF, Kok CR, Hutkins R. The future of synbiotics: rational formulation and design.Front Microbiol2022;13:919725 PMCID:PMC9354465

[99]

Taverniti V.The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept).Genes Nutr2011;6:261-74 PMCID:PMC3145061

[100]

Duarte M,Oliveira C,Amaro A.Current postbiotics in the cosmetic market - an update and development opportunities.Appl Microbiol Biotechnol2022;106:5879-91

[101]

Cicenia A,Carabotti M,Marignani M.Postbiotic activities of lactobacilli-derived factors.J Clin Gastroenterol2014;48 Suppl 1:S18-22

[102]

Liang B.The current and future perspectives of postbiotics.Probiotics Antimicrob Proteins2023;15:1626-43 PMCID:PMC9913028

[103]

Li M,Diaz I.Multi-omic approach to decipher the impact of skincare products with pre/postbiotics on skin microbiome and metabolome.Front Med2023;10:1165980 PMCID:PMC10392128

[104]

Rafique N,Dar AH.Promising bioactivities of postbiotics: a comprehensive review.J Agric Food Res2023;14:100708

[105]

Thorakkattu P,Shah K.Postbiotics: current trends in food and pharmaceutical industry.Foods2022;11:3094 PMCID:PMC9564201

[106]

Satokari R.Modulation of gut microbiota for health by current and next-generation probiotics.Nutrients2019;11:1921 PMCID:PMC6723275

[107]

López-Moreno A,Torres-Sánchez A.Next generation probiotics for neutralizing obesogenic effects: taxa culturing searching strategies.Nutrients2021;13:1617 PMCID:PMC8151043

[108]

Cani PD.Next-generation beneficial microbes: the case of Akkermansia muciniphila.Front Microbiol2017;8:1765 PMCID:PMC5614963

[109]

Depommier C,Everard A,De Vos WM.Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice.Gut Microbes2020;11:1231-45 PMCID:PMC7524283

[110]

Abot A,Pomié N.Pasteurized Akkermansia muciniphila improves glucose metabolism is linked with increased hypothalamic nitric oxide release.Heliyon2023;9:e18196 PMCID:PMC10368821

[111]

Stavropoulou E.Probiotics in medicine: a long debate.Front Immunol2020;11:2192 PMCID:PMC7544950

[112]

da Silva JTS, Nagata CLP. Efficacy of prebiotics in promoting a healthy gut microbiota in adults and elderly persons in the community.Nutrire2021;46:18

[113]

Wang S,Tian F.Rational use of prebiotics for gut microbiota alterations: specific bacterial phylotypes and related mechanisms.J Funct Foods2020;66:103838

[114]

Martinson JNV.Escherichia coli residency in the gut of healthy human adults.EcoSal Plus2020;9:10.1128/ecosalplus.esp-0003 PMCID:PMC7523338

[115]

Paquet JC,Cordaillat-Simmons M.Entering first-in-human clinical study with a single-strain live biotherapeutic product: input and feedback gained from the EMA and the FDA.Front Med2021;8:716266 PMCID:PMC8385711

[116]

Early clinical trials with live biotherapeutic products: chemistry, manufacturing, and control information. 2016. Available from: https://www.fda.gov/files/vaccines,%20blood%20&%20biologics/published/Early-Clinical-Trials-With-Live-Biotherapeutic-Products--Chemistry--Manufacturing--and-Control-Information--Guidance-for-Industry.pdf. [Last accessed on 15 Mar 2024]

[117]

Cordaillat-Simmons M,Pot B.Live biotherapeutic products: the importance of a defined regulatory framework.Exp Mol Med2020;52:1397-406 PMCID:PMC8080583

[118]

Rouanet A,Bru A.Live biotherapeutic products, a road map for safety assessment.Front Med2020;7:237 PMCID:PMC7319051

[119]

European Directorate for the Quality of Medicines & HealthCare (EDQM). Live Biotherapeutic Products (LBPs): European Pharmacopoeia Commission sets unprecedented quality requirements. Available from: https://www.edqm.eu/en/w/live-biotherapeutic-products-lbps-european-pharmacopoeia-commission-sets-unprecedented-quality-requirements. [Last accessed on 15 Mar 2024]

[120]

de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights.Gut2022;71:1020-32 PMCID:PMC8995832

[121]

Clemente JC,Parfrey LW.The impact of the gut microbiota on human health: an integrative view.Cell2012;148:1258-70 PMCID:PMC5050011

[122]

Yip AYG,Omelchenko O.Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites.Nat Commun2023;14:5094 PMCID:PMC10444851

[123]

Kim S,Pamer EG.The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens.Immunol Rev2017;279:90-105 PMCID:PMC6026851

[124]

Dethlefsen L.Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation.Proc Natl Acad Sci U S A2011;108 Suppl 1:4554-61 PMCID:PMC3063582

[125]

Relman DA.The human microbiome: ecosystem resilience and health.Nutr Rev2012;70 Suppl 1:S2-9 PMCID:PMC3422777

[126]

Saha S,Tosh PK,Khanna S.Faecal microbiota transplantation for eradicating carriage of multidrug-resistant organisms: a systematic review.Clin Microbiol Infect2019;25:958-63

[127]

Hanssen NMJ,Nieuwdorp M.Fecal microbiota transplantation in human metabolic diseases: from a murky past to a bright future?.Cell Metab2021;33:1098-110

[128]

Groen AK.An evaluation of the therapeutic potential of fecal microbiota transplantation to treat infectious and metabolic diseases.EMBO Mol Med2017;9:1-3 PMCID:PMC5210083

[129]

Khoruts A.Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology.Immunol Lett2014;162:77-81 PMCID:PMC5554112

[130]

Friedman ND,Stupart D.Prevalence of Clostridium difficile colonization among healthcare workers.BMC Infect Dis2013;13:459 PMCID:PMC3850636

[131]

Cold F,Dahlerup JF,Hvas CL.Systematic review with meta-analysis: encapsulated faecal microbiota transplantation - evidence for clinical efficacy.Therap Adv Gastroenterol2021;14:17562848211041004 PMCID:PMC8414624

[132]

Baunwall SMD,Eriksen MK.Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis.EClinicalMedicine2020;29-30:100642 PMCID:PMC7788438

[133]

Seekatz AM,Rao K.Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection.Anaerobe2018;53:64-73 PMCID:PMC6185828

[134]

Shetty SA,Lahti L,de Vos WM.Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies.FEMS Microbiol Rev2017;41:182-99 PMCID:PMC5399919

[135]

Costello SP,Vuaran MS,Andrews JM.Faecal microbiota transplant for recurrent Clostridium difficile infection using long-term frozen stool is effective: clinical efficacy and bacterial viability data.Aliment Pharmacol Ther2015;42:1011-8

[136]

Youngster I,Pindar C,Sauk J.Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection.JAMA2014;312:1772-8

[137]

Kao D,Silva M.Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial.JAMA2017;318:1985-93 PMCID:PMC5820695

[138]

Mehta SR.Microbiota-based therapies Clostridioides difficile infection that is refractory to antibiotic therapy.Transl Res2021;230:197-207

[139]

de Groot P,Pellegrini S.Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial.Gut2021;70:92-105 PMCID:PMC7788262

[140]

Gangwani MK,Aziz A.Fresh versus frozen versus lyophilized fecal microbiota transplant for recurrent Clostridium difficile infection: a systematic review and network meta-analysis.J Clin Gastroenterol2023;57:239-45

[141]

Saha S.Stool banking for fecal microbiota transplantation: ready for prime time?.Hepatobiliary Surg Nutr2021;10:110-2 PMCID:PMC7867714

[142]

Pérez-Nadales E,Recio M.Randomised, double-blind, placebo-controlled, phase 2, superiority trial to demonstrate the effectiveness of faecal microbiota transplantation for selective intestinal decolonisation of patients colonised by carbapenemase-producing Klebsiella pneumoniae (KAPEDIS).BMJ Open2022;12:e058124 PMCID:PMC8987760

[143]

Peterson DA,Pace NR.Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases.Cell Host Microbe2008;3:417-27 PMCID:PMC2872787

[144]

Manrique P,Walk ST,de Vos WM.Healthy human gut phageome.Proc Natl Acad Sci U S A2016;113:10400-5 PMCID:PMC5027468

[145]

Duvallet C,Gurry T,Alm EJ.Meta-analysis of gut microbiome studies identifies disease-specific and shared responses.Nat Commun2017;8:1784 PMCID:PMC5716994

[146]

Schmidt TSB,Maistrenko OM.Drivers and determinants of strain dynamics following fecal microbiota transplantation.Nat Med2022;28:1902-12 PMCID:PMC9499871

[147]

Conceição-Neto N,Dierckx T.Low eukaryotic viral richness is associated with faecal microbiota transplantation success in patients with UC.Gut2018;67:1558-9 PMCID:PMC6204959

[148]

Routy B,Derosa L.Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.Science2018;359:91-7

[149]

Park SY.Fecal microbiota transplantation: is it safe?.Clin Endosc2021;54:157-60 PMCID:PMC8039753

[150]

Jiang ZD,Ajami NJ.Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: a randomized clinical trial.PLoS One2018;13:e0205064 PMCID:PMC6214502

[151]

Wang S,Wang W.Systematic review: adverse events of fecal microbiota transplantation.PLoS One2016;11:e0161174 PMCID:PMC4986962

[152]

Gosálbez L. Fecal microbiota transplantation (FMT): global industry and regulatory overview. Available from: https://www.microbiometimes.com/fecal-microbiota-transplantation-fmt-global-industry-and-regulatory-overview/. [Last accessed on 15 Mar 2024]

[153]

Faecal microbiota transplantation. EU-IN Horizon Scanning Report. 2022. Available from: https://www.ema.europa.eu/en/documents/report/faecal-microbiota-transplantation-eu-horizon-scanning-report_en.pdf. [Last accessed on 15 Mar 2024]

[154]

Regulation (EU) No 536/2014 of the European Parliament and of the Council of 16 April 2014 on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC Relevant text for EEA purposes. Available from: http://data.europa.eu/eli/reg/2014/536/oj/spa. [Last accessed on 15 Mar 2024]

[155]

Integrated addendum to ICH E6(R1): guideline for good clinical practice E6(R2). Available from: https://database.ich.org/sites/default/files/E6_R2_Addendum.pdf. [Last accessed on 15 Mar 2024]

[156]

Guideline on the requirements for quality documentation concerning biological investigational medicinal products in clinical trials. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-requirements-quality-documentation-concerning-biological-investigational-medicinal-products-clinical-trials-revision-2_en.pdf. [Last accessed on 15 Mar 2024]

[157]

FDA. FDA approves first orally administered fecal microbiota product for the prevention of recurrence of Clostridioides difficile infection. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-orally-administered-fecal-microbiota-product-prevention-recurrence-clostridioides. [Last accessed on 15 Mar 2024]

[158]

BiomeBank. BiomeBank announces world first regulatory approval for donor derived microbiome drug. 2022. Available from: https://www.biomebank.com/news/biomebank-announces-world-first-regulatory-approval-for-donor-derived-microbiome-drug/. [Last accessed on 15 Mar 2024]

[159]

FDA. VOWST. Available from: https://www.fda.gov/vaccines-blood-biologics/vowst. [Last accessed on 15 Mar 2024]

[160]

Turnbaugh PJ,Hamady M,Knight R.The human microbiome project.Nature2007;449:804-10 PMCID:PMC3709439

[161]

Oliveira FS,Cade S.MicrobiomeDB: a systems biology platform for integrating, mining and analyzing microbiome experiments.Nucleic Acids Res2018;46:D684-91 PMCID:PMC5753346

[162]

Wu S,Li Y.GMrepo: a database of curated and consistently annotated human gut metagenomes.Nucleic Acids Res2020;48:D545-53 PMCID:PMC6943048

[163]

Katz K,Lapoint R,Brister JR.The sequence read archive: a decade more of explosive growth.Nucleic Acids Res2022;50:D387-90 PMCID:PMC8728234

[164]

MIT Professional Education. Artificial intelligence vs machine learning: what’s the difference? Available from: https://professionalprograms.mit.edu/blog/technology/machine-learning-vs-artificial-intelligence/. [Last accessed on 15 Mar 2024]

[165]

Russell SJ. Artificial intelligence : a modern approach. Third edition. Available from: https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf. [Last accessed 15 Mar 2024]

[166]

LeCun Y,Hinton G.Deep learning.Nature2015;521:436-44

[167]

Ghannam RB.Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring.Comput Struct Biotechnol J2021;19:1092-107 PMCID:PMC7892807

[168]

Acharjee A,Choudhury SP.The diagnostic potential and barriers of microbiome based therapeutics.Diagnosis2022;9:411-20

[169]

Ratiner K,Goldenberg K.Utilization of host and microbiome features in determination of biological aging.Microorganisms2022;10:668 PMCID:PMC8950177

[170]

Su Q,Lau RI.Faecal microbiome-based machine learning for multi-class disease diagnosis.Nat Commun2022;13:6818 PMCID:PMC9649010

[171]

Wani AK,Kumar V.Metagenomics and artificial intelligence in the context of human health.Infect Genet Evol2022;100:105267

[172]

Marcos-Zambrano LJ,Loncar Turukalo T.Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment.Front Microbiol2021;12:634511 PMCID:PMC7962872

[173]

Radjabzadeh D,Uitterlinden AG.Gut microbiome-wide association study of depressive symptoms.Nat Commun2022;13:7128 PMCID:PMC9726982

[174]

Sudhakar P,Verstockt B,Vermeire S.Computational biology and machine learning approaches to understand mechanistic microbiome-host interactions.Front Microbiol2021;12:618856 PMCID:PMC8148342

[175]

Belcour A,Aite M,Hildebrand F.Metage2Metabo, microbiota-scale metabolic complementarity for the identification of key species.Elife2020;9:e61968 PMCID:PMC7861615

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/