PDF
Abstract
Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC).
Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated.
Results: The supplementation of the media with inulin promoted the growth of Anaerostipes, Bifidobacterium, Blautia, and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant.
Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.
Keywords
Gut-on-a-chip
/
microbiome
/
in vitro models
/
ex vivo tissue
/
host-response
/
microbial metabolite
/
short-chain fatty acids
/
host-microbe interaction
Cite this article
Download citation ▾
Joanne M. Donkers, Maria Wiese, Tim J. van den Broek, Esmée Wierenga, Valeria Agamennone, Frank Schuren, Evita van de Steeg.
A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome.
Microbiome Research Reports, 2024, 3(2): 18 DOI:10.20517/mrr.2023.79
| [1] |
Geng ZH,Li QL,Zhou PH.Enteric nervous system: the bridge between the gut microbiota and neurological disorders.Front Aging Neurosci2022;14:810483 PMCID:PMC9063565
|
| [2] |
Tokuhara D,Kamioka M,Ernst P.A comprehensive understanding of the gut mucosal immune system in allergic inflammation.Allergol Int2019;68:17-25
|
| [3] |
Fung TC,Hsiao EY.Interactions between the microbiota, immune and nervous systems in health and disease.Nat Neurosci2017;20:145-55 PMCID:PMC6960010
|
| [4] |
Sekirov I,Antunes LCM.Gut microbiota in health and disease.Physiol Rev2010;90:859-904
|
| [5] |
O’Hara AM.The gut flora as a forgotten organ.EMBO Rep2006;7:688-93 PMCID:PMC1500832
|
| [6] |
Erny D,Prinz M.Communicating systems in the body: how microbiota and microglia cooperate.Immunology2017;150:7-15 PMCID:PMC5341501
|
| [7] |
Hou K,Chen XY.Microbiota in health and diseases.Signal Transduct Target Ther2022;7:135 PMCID:PMC9034083
|
| [8] |
Gomaa EZ.Human gut microbiota/microbiome in health and diseases: a review.Antonie Van Leeuwenhoek2020;113:2019-40
|
| [9] |
Hooper LV,Macpherson AJ.Interactions between the microbiota and the immune system.Science2012;336:1268-73 PMCID:PMC4420145
|
| [10] |
Sommer F.The gut microbiota - masters of host development and physiology.Nat Rev Microbiol2013;11:227-38
|
| [11] |
Clemente JC,Parfrey LW.The impact of the gut microbiota on human health: an integrative view.Cell2012;148:1258-70 PMCID:PMC5050011
|
| [12] |
Rinninella E,Cintoni M.What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases.Microorganisms2019;7:14 PMCID:PMC6351938
|
| [13] |
Roberfroid M.Nondigestible oligosaccharides.Crit Rev Food Sci Nutr2000;40:461-80
|
| [14] |
Blaak EE,Theis S.Short chain fatty acids in human gut and metabolic health.Benef Microbes2020;11:411-55
|
| [15] |
Parada Venegas D,Landskron G.Corrigendum: short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases.Front Immunol2019;10:1486 PMCID:PMC6611342
|
| [16] |
Yu X,Nguyen LTT,Alm EJ.Prebiotics and community composition influence gas production of the human gut microbiota.mBio2020;11:e00217-20 PMCID:PMC7482059
|
| [17] |
Deleu S,Raes J,Vermeire S.Short chain fatty acids and its producing organisms: an overlooked therapy for IBD?.EBioMedicine2021;66:103293 PMCID:PMC8047503
|
| [18] |
Chen T,Zhang C,Zhao L.Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota.Sci Rep2017;7:2594 PMCID:PMC5453967
|
| [19] |
Gibson GR,Sanders ME.Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat Rev Gastroenterol Hepatol2017;14:491-502
|
| [20] |
Fehlbaum S,Kieboom J.In vitro fermentation of selected prebiotics and their effects on the composition and activity of the adult gut microbiota.Int J Mol Sci2018;19:3097 PMCID:PMC6213619
|
| [21] |
Vandeputte D,Vieira-Silva S.Prebiotic inulin-type fructans induce specific changes in the human gut microbiota.Gut2017;66:1968-74 PMCID:PMC5739857
|
| [22] |
Baxter NT,Venkataraman A,Waldron C.Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers.mBio2019;10:e02566-18 PMCID:PMC6355990
|
| [23] |
Wang X,Zhang Q,Xiao X.Dietary supplementation with inulin modulates the gut microbiota and improves insulin sensitivity in prediabetes.Int J Endocrinol2021;2021:5579369 PMCID:PMC8261184
|
| [24] |
Le Bastard Q, Chapelet G, Javaudin F, Lepelletier D, Batard E, Montassier E. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies.Eur J Clin Microbiol Infect Dis2020;39:403-13
|
| [25] |
Holscher HD.Dietary fiber and prebiotics and the gastrointestinal microbiota.Gut Microbes2017;8:172-84 PMCID:PMC5390821
|
| [26] |
McDonald JAK.In vitro models of the human microbiota and microbiome.Emerg Top Life Sci2017;1:373-84
|
| [27] |
Rahman S,Donkers JM.The progress of intestinal epithelial models from cell lines to gut-on-chip.Int J Mol Sci2021;22:13472 PMCID:PMC8709104
|
| [28] |
Eslami Amirabadi H,Wierenga E.Intestinal explant barrier chip: long-term intestinal absorption screening in a novel microphysiological system using tissue explants.Lab Chip2022;22:326-42
|
| [29] |
Schuren F,Keijser B,van der Vossen J.The i-screen: a versatile preclinical platform for gut microbiota studies.J Prob Health2019;7:212
|
| [30] |
Ladirat SE,Nauta A.High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition.J Microbiol Methods2013;92:387-97
|
| [31] |
Wiese M,Smits WK.2’-Fucosyllactose inhibits proliferation of Clostridioides difficile ATCC 43599 in the CDi-screen, an in vitro model simulating Clostridioides difficile infection.Front Cell Infect Microbiol2022;12:991150 PMCID:PMC9650113
|
| [32] |
Agamennone V,de Kat Angelino-Bart A,van der Kamp JW.Individual and group-based effects of in vitro fiber interventions on the fecal microbiota.Microorganisms2023;11:2001 PMCID:PMC10459671
|
| [33] |
R Core Team. R: A Language and Environment for Statistical Computing. 2016. Available from: https://www.R-project.org/. [Last accessed on 22 Feb 2024]
|
| [34] |
Wickham H.ggplot2: elegant graphics for data analysis. 2th ed. New York: Springer Cham; 2016.
|
| [35] |
McMurdie PJ.phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.PLoS One2013;8:e61217 PMCID:PMC3632530
|
| [36] |
Stacklies W,Scholz M,Selbig J.pcaMethods - a bioconductor package providing PCA methods for incomplete data.Bioinformatics2007;23:1164-7
|
| [37] |
Oksanen J,Blanchet FG. Package ‘vegan’: Community ecology package. 2022. Available from: https://cran.r-project.org/web/packages/vegan/vegan.pdf. [Last accessed on 22 Feb 2024]
|
| [38] |
Robinson MD,Smyth GK.edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics2010;26:139-40 PMCID:PMC2796818
|
| [39] |
Hoffman GE.Dream: powerful differential expression analysis for repeated measures designs.Bioinformatics2021;37:192-201 PMCID:PMC8055218
|
| [40] |
Stevens LJ,Erpelinck SLA.A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes.Eur J Pharm Sci2019;137:104989
|
| [41] |
Hatton GB,Basit AW.Animal farm: considerations in animal gastrointestinal physiology and relevance to drug delivery in humans.J Pharm Sci2015;104:2747-76
|
| [42] |
Donkers JM,Grigoriev I.Advanced epithelial lung and gut barrier models demonstrate passage of microplastic particles.Micropl Nanopl2022;2:6
|
| [43] |
Westerhout J,Grossouw D.A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices.Eur J Pharm Sci2014;63:167-77
|
| [44] |
Hoffman GE.variancePartition: interpreting drivers of variation in complex gene expression studies.BMC Bioinformatics2016;17:483 PMCID:PMC5123296
|
| [45] |
Vinolo MAR,Nachbar RT.Regulation of inflammation by short chain fatty acids.Nutrients2011;3:858-76 PMCID:PMC3257741
|
| [46] |
Yao Y,Fei W,Zhao M.The role of short-chain fatty acids in immunity, inflammation and metabolism.Crit Rev Food Sci Nutr2022;62:1-12
|
| [47] |
Chelakkot C,Ryu SH.Mechanisms regulating intestinal barrier integrity and its pathological implications.Exp Mol Med2018;50:1-9 PMCID:PMC6095905
|
| [48] |
Cummins PM.Occludin: one protein, many forms.Mol Cell Biol2012;32:242-50 PMCID:PMC3255790
|
| [49] |
Fasano A,Wang W.Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.Lancet2000;355:1518-9
|
| [50] |
Wood Heickman LK, DeBoer MD, Fasano A. Zonulin as a potential putative biomarker of risk for shared type 1 diabetes and celiac disease autoimmunity.Diabetes Metab Res Rev2020;36:e3309 PMCID:PMC7340576
|
| [51] |
Schierack P,Pollmann M.Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine.Histochem Cell Biol2006;125:293-305
|
| [52] |
Walsh MD,Williamson E.Expression of MUC2, MUC5AC, MUC5B, and MUC6 mucins in colorectal cancers and their association with the CpG island methylator phenotype.Mod Pathol2013;26:1642-56
|
| [53] |
Moncada DM,Chadee K.Mucin and Toll-like receptors in host defense against intestinal parasites.Trends Parasitol2003;19:305-11
|
| [54] |
Sag D,Gunalp S.The role of TRAIL/DRs in the modulation of immune cells and responses.Cancers2019;11:1469 PMCID:PMC6826877
|
| [55] |
Falschlehner C,Walczak H.Following TRAIL’s path in the immune system.Immunology2009;127:145-54 PMCID:PMC2691779
|
| [56] |
Bernhard S,Stratmann AEP.Interleukin 8 elicits rapid physiological changes in neutrophils that are altered by inflammatory conditions.J Innate Immun2021;13:225-41 PMCID:PMC8460987
|
| [57] |
Meng L,Liu A,Yang X.Effects of lipopolysaccharide-binding protein (LBP) single nucleotide polymorphism (SNP) in infections, inflammatory diseases, metabolic disorders and cancers.Front Immunol2021;12:681810 PMCID:PMC8290185
|
| [58] |
Weckmann M,Simpson JL.Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease.Nat Med2007;13:1308-15
|
| [59] |
Sierro F,Coste A,Kraehenbuhl JP.Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells.Proc Natl Acad Sci U S A2001;98:13722-7 PMCID:PMC61108
|
| [60] |
Schilderink R,Seppen J.The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.Am J Physiol Gastrointest Liver Physiol2016;310:G1138-46
|
| [61] |
Chriett S,Wojtala M,Balcerczyk A.Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule.Sci Rep2019;9:742 PMCID:PMC6346118
|
| [62] |
Hecker J,Hiligsmann M.Burden of disease study of overweight and obesity; the societal impact in terms of cost-of-illness and health-related quality of life.BMC Public Health2022;22:46 PMCID:PMC8740868
|
| [63] |
van den Broek-Altenburg E, Atherly A, Holladay E. Changes in healthcare spending attributable to obesity and overweight: payer- and service-specific estimates.BMC Public Health2022;22:962 PMCID:PMC9101934
|
| [64] |
Singh S,Nguyen NH.Trends in U.S. health care spending on inflammatory bowel diseases, 1996-2016.Inflamm Bowel Dis2022;28:364-72 PMCID:PMC8889287
|
| [65] |
CDC. Health and economic costs of chronic diseases. 2023. Available from: https://www.cdc.gov/chronicdisease/about/costs/index.htm. [Last accessed on 22 Feb 2024]
|
| [66] |
Quaranta G,Fancello G.Fecal microbiota transplantation and other gut microbiota manipulation strategies.Microorganisms2022;10:2424 PMCID:PMC9781458
|
| [67] |
Donkers JM,van de Steeg E.Gut-on-a-chip research for drug development: implications of chip design on preclinical oral bioavailability or intestinal disease studies.Biomimetics2023;8:226 PMCID:PMC10296225
|
| [68] |
Wang H,Cheah KY,Howarth GS.Escherichia coli Nissle 1917-derived factors reduce cell death and late apoptosis and increase transepithelial electrical resistance in a model of 5-fluorouracil-induced intestinal epithelial cell damage.Cancer Biol Ther2014;15:560-9 PMCID:PMC4026078
|
| [69] |
Khodaii Z,Natanzi MM.Probiotic bacteria and their supernatants protect enterocyte cell lines from enteroinvasive Escherichia coli (EIEC) invasion.Int J Mol Cell Med2017;6:183-9 PMCID:PMC5898642
|
| [70] |
Rocha-Ramírez LM,Moreno-Guerrero SS,Eslava CA.In vitro effect of the cell-free supernatant of the Lactobacillus casei strain IMAU60214 against the different pathogenic properties of Diarrheagenic Escherichia coli.Microorganisms2023;11:1324 PMCID:PMC10221918
|
| [71] |
Bermudez-Brito M,Gómez-Llorente C,Romero F.Lactobacillus paracasei CNCM I-4034 and its culture supernatant modulate Salmonella-induced inflammation in a novel transwell co-culture of human intestinal-like dendritic and Caco-2 cells.BMC Microbiol2015;15:79 PMCID:PMC5353866
|
| [72] |
Gonzales J,Aymeric L.Fecal supernatant from adult with autism spectrum disorder alters digestive functions, intestinal epithelial barrier, and enteric nervous system.Microorganisms2021;9:1723 PMCID:PMC8399841
|
| [73] |
Nguyen TLA,Liston A.How informative is the mouse for human gut microbiota research?.Dis Model Mech2015;8:1-16 PMCID:PMC4283646
|
| [74] |
Marzorati M,De Ryck T.The HMI™ module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro.BMC Microbiol2014;14:133 PMCID:PMC4039060
|
| [75] |
Shah P,Glaab E.A microfluidics-based in vitro model of the gastrointestinal human-microbe interface.Nat Commun2016;7:11535 PMCID:PMC4865890
|
| [76] |
Morelli M,Ng CP.Gut-on-a-chip models: current and future perspectives for host - microbial interactions research.Biomedicines2023;11:619 PMCID:PMC9953162
|
| [77] |
Scott KP,Duncan SH.Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro.FEMS Microbiol Ecol2014;87:30-40
|
| [78] |
Sawicki CM,Obin M,Chung M.Dietary fiber and the human gut microbiota: application of evidence mapping methodology.Nutrients2017;9:125 PMCID:PMC5331556
|
| [79] |
Scotti E,Sasso GL.Exploring the microbiome in health and disease: implications for toxicology.Toxicol Res Appl2017;1:239784731774188
|
| [80] |
Singh V,Son H.Butyrate producers, “The Sentinel of Gut”: their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics.Front Microbiol2022;13:1103836 PMCID:PMC9877435
|
| [81] |
Belotserkovsky I,Jenkins C.Escherichia coli, a versatile pathogen. Springer Cham; 2018.
|
| [82] |
dos Reis RS.Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases.Gut Pathog2010;2:8 PMCID:PMC2921366
|
| [83] |
Chen J,Ho CL.Recent development of probiotic Bifidobacteria for treating human diseases.Front Bioeng Biotechnol2021;9:770248 PMCID:PMC8727868
|
| [84] |
O’Callaghan A.Bifidobacteria and their role as members of the human gut microbiota.Front Microbiol2016;7:925 PMCID:PMC4908950
|
| [85] |
Belenguer A,Calder AG.Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut.Appl Environ Microbiol2006;72:3593-9 PMCID:PMC1472403
|
| [86] |
Guilloteau P,Hammon HM.Nutritional programming of gastrointestinal tract development. Is the pig a good model for man?.Nutr Res Rev2010;23:4-22
|
| [87] |
Hodgkinson K,Dobranowski P.Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease.Clin Nutr2023;42:61-75
|
| [88] |
Anshory M,Kalim H.Butyrate properties in immune-related diseases: friend or foe?.Fermentation2023;9:205
|
| [89] |
Recharla N,Shi XZ.Gut microbial metabolite butyrate and its therapeutic role in inflammatory bowel disease: a literature review.Nutrients2023;15:2275 PMCID:PMC10221771
|
| [90] |
Peng L,Chen W,Lin J.Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier.Pediatr Res2007;61:37-41
|
| [91] |
Peng L,Green RS,Lin J.Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.J Nutr2009;139:1619-25 PMCID:PMC2728689
|
| [92] |
Kinoshita M,Saito Y.Butyrate reduces colonic paracellular permeability by enhancing PPARγ activation.Biochem Biophys Res Commun2002;293:827-31
|
| [93] |
Tabat MW,Markgren M,Brummer RJ.Acute effects of butyrate on induced hyperpermeability and tight junction protein expression in human colonic tissues.Biomolecules2020;10:766 PMCID:PMC7277647
|
| [94] |
Donkers JM,van de Steeg E.Intestine-on-a-chip: next level in vitro research model of the human intestine.Curr Opin Toxicol2021;25:6-14
|
| [95] |
Siddiqui MT.The immunomodulatory functions of butyrate.J Inflamm Res2021;14:6025-41 PMCID:PMC8608412
|
| [96] |
Zheng L,Battista KD.Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2.J Immunol2017;199:2976-84 PMCID:PMC5636678
|
| [97] |
Ratajczak W,Mizerski A,Sipak O.Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs).Acta Biochim Pol2019;66:1-12
|
| [98] |
Vinolo MAR,Hatanaka E,Sampaio SC.Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils.J Nutr Biochem2011;22:849-55
|
| [99] |
Park J,Kang SG.Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway.Mucosal Immunol2015;8:80-93 PMCID:PMC4263689
|
| [100] |
Liu L,Min J.Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells.Cell Immunol2012;277:66-73
|
| [101] |
Arpaia N,Fan X.Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.Nature2013;504:451-5 PMCID:PMC3869884
|
| [102] |
van Nuenen MHMC, Venema K, van Der Woude JCJ, Kuipers EJ. The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease.Dig Dis Sci2004;49:485-91
|
| [103] |
van Nuenen MHMC, de Ligt RAF, Doornbos RP, van der Woude JCJ, Kuipers EJ, Venema K. The influence of microbial metabolites on human intestinal epithelial cells and macrophages in vitro.FEMS Immunol Med Microbiol2005;45:183-9
|
| [104] |
Dengler F,Gäbel G.Butyrate protects porcine colon epithelium from hypoxia-induced damage on a functional level.Nutrients2021;13:305 PMCID:PMC7911740
|
| [105] |
van Deuren T, Blaak EE, Canfora EE. Butyrate to combat obesity and obesity-associated metabolic disorders: current status and future implications for therapeutic use.Obes Rev2022;23:e13498 PMCID:PMC9541926
|
| [106] |
Vernocchi P,Putignani L.Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health.Front Microbiol2016;7:1144 PMCID:PMC4960240
|
| [107] |
Bauermeister A,Costa-Lotufo LV,Dorrestein PC.Mass spectrometry-based metabolomics in microbiome investigations.Nat Rev Microbiol2022;20:143-60 PMCID:PMC9578303
|
| [108] |
Segers K,Mangelings D,Van Eeckhaut A.Analytical techniques for metabolomic studies: a review.Bioanalysis2019;11:2297-318
|
| [109] |
Miggiels P,van Westen GJP,Hankemeier T.Novel technologies for metabolomics: more for less.TrAC Trend Anal Chem2019;120:115323
|