Probing interspecies metabolic interactions within a synthetic binary microbiome using genome-scale modeling

Kiumars Badr , Q. Peter He , Jin Wang

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) : 31

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) :31 DOI: 10.20517/mrr.2023.70
Original Article

Probing interspecies metabolic interactions within a synthetic binary microbiome using genome-scale modeling

Author information +
History +
PDF

Abstract

Aim: Metabolic interactions within a microbial community play a key role in determining the structure, function, and composition of the community. However, due to the complexity and intractability of natural microbiomes, limited knowledge is available on interspecies interactions within a community. In this work, using a binary synthetic microbiome, a methanotroph-photoautotroph (M-P) coculture, as the model system, we examined different genome-scale metabolic modeling (GEM) approaches to gain a better understanding of the metabolic interactions within the coculture, how they contribute to the enhanced growth observed in the coculture, and how they evolve over time.

Methods: Using batch growth data of the model M-P coculture, we compared three GEM approaches for microbial communities. Two of the methods are existing approaches: SteadyCom, a steady state GEM, and dynamic flux balance analysis (DFBA) Lab, a dynamic GEM. We also proposed an improved dynamic GEM approach, DynamiCom, for the M-P coculture.

Results: SteadyCom can predict the metabolic interactions within the coculture but not their dynamic evolutions; DFBA Lab can predict the dynamics of the coculture but cannot identify interspecies interactions. DynamiCom was able to identify the cross-fed metabolite within the coculture, as well as predict the evolution of the interspecies interactions over time.

Conclusion: A new dynamic GEM approach, DynamiCom, was developed for a model M-P coculture. Constrained by the predictions from a validated kinetic model, DynamiCom consistently predicted the top metabolites being exchanged in the M-P coculture, as well as the establishment of the mutualistic N-exchange between the methanotroph and cyanobacteria. The interspecies interactions and their dynamic evolution predicted by DynamiCom are supported by ample evidence in the literature on methanotroph, cyanobacteria, and other cyanobacteria-heterotroph cocultures.

Keywords

Synthetic microbiome / methanotroph-photoautotroph coculture / interspecies metabolic interactions / genome-scale metabolic modeling / steady state modeling / dynamic modeling

Cite this article

Download citation ▾
Kiumars Badr, Q. Peter He, Jin Wang. Probing interspecies metabolic interactions within a synthetic binary microbiome using genome-scale modeling. Microbiome Research Reports, 2024, 3(3): 31 DOI:10.20517/mrr.2023.70

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

West SA,Buckling A,Griffin AS.The social lives of microbes.Annu Rev Ecol Evol Syst2007;38:53-77

[2]

Klawonn I,Whitehouse MJ.Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities.ISME J2019;13:1960-74 PMCID:PMC6776039

[3]

Brileya KA,Zane GM,Fields MW.Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy.Front Microbiol2014;5:693 PMCID:PMC4266047

[4]

Baldini F,Heirendt L,Fleming RMT.The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities.Bioinformatics2019;35:2332-4 PMCID:PMC6596895

[5]

Abisado RG,Klaus JR,Chandler JR.Erratum for Abisado et al., “Bacterial quorum sensing and microbial community interactions”.mBio2018;9:e01749-18 PMCID:PMC6168862

[6]

Peng X,O’malley MA.Microbial communities for bioprocessing: lessons learned from nature.Curr Opin Chem Eng2016;14:103-9

[7]

Momeni B,Fields MW.Strong inter-population cooperation leads to partner intermixing in microbial communities.Elife2013;2:e00230 PMCID:PMC3552619

[8]

Graham AE.The microbial food revolution.Nat Commun2023;14:2231 PMCID:PMC10115867

[9]

Legras JL,Cornuet JM.Bread, beer and wine: saccharomyces cerevisiae diversity reflects human history.Mol Ecol2007;16:2091-102

[10]

Nai C.From axenic to mixed cultures: technological advances accelerating a paradigm shift in microbiology.Trends Microbiol2018;26:538-54

[11]

Vu CHT,Chang YK.Axenic cultures for microalgal biotechnology: establishment, assessment, maintenance, and applications.Biotechnol Adv2018;36:380-96

[12]

Qian X,Sui Y.Biotechnological potential and applications of microbial consortia.Biotechnol Adv2020;40:107500

[13]

Zhang H,Li Z.Engineering Escherichia coli coculture systems for the production of biochemical products.Proc Natl Acad Sci U S A2015;112:8266-71 PMCID:PMC4500268

[14]

Zhang H,Pereira B.Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol.Microb Cell Fact2015;14:134 PMCID:PMC4570557

[15]

Wang J,Wray V,Proksch P.Induced production of depsipeptides by co-culturing Fusarium tricinctum and Fusarium begoniae.Tetrahedron Lett2013;54:2492-6

[16]

Charusanti P,Nagarajan H.Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction.PLoS One2012;7:e33727 PMCID:PMC3312335

[17]

Wen Z,Zhang Y.Enhanced solvent production by metabolic engineering of a twin-clostridial consortium.Metab Eng2017;39:38-48

[18]

Shahab RL,Brethauer S.Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium.Biotechnol Bioeng2018;115:1207-15

[19]

Kip N,Pan Y.Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems.Nature Geosci2010;3:617-21

[20]

Milucka J,Lu L.Methane oxidation coupled to oxygenic photosynthesis in anoxic waters.ISME J2015;9:1991-2002 PMCID:PMC4542029

[21]

Raghoebarsing AA,Schmid MC.Methanotrophic symbionts provide carbon for photosynthesis in peat bogs.Nature2005;436:1153-6

[22]

Badr K,Wang J.A novel semi-structured kinetic model of methanotroph-photoautotroph cocultures for biogas conversion.Chem Eng J2022;431:133461

[23]

Roberts N,He QP.A microalgae-methanotroph coculture is a promising platform for fuels and chemical production from wastewater.Front Energy Res2020;8:563352

[24]

Badr K,Roberts N,Wang J.Photoautotroph-methanotroph coculture - a flexible platform for efficient biological CO2-CH4 co-utilization.IFAC PapersOnLine2019;52:916-21

[25]

Rasouli Z,D’Este M,Angelidaki I.Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs.Biochem Eng J2018;134:129-35

[26]

Kapoor R,Tyagi B.Advances in biogas valorization and utilization systems: a comprehensive review.J Clean Prod2020;273:123052

[27]

van der Ha D,Kerckhof FM.Conversion of biogas to bioproducts by algae and methane oxidizing bacteria.Environ Sci Technol2012;46:13425-31

[28]

Mishra A,Bolan NS,Kumar R.Multidimensional approaches of biogas production and up-gradation: opportunities and challenges.Bioresour Technol2021;338:125514

[29]

Robinson CJ,Young VB.From structure to function: the ecology of host-associated microbial communities.Microbiol Mol Biol Rev2010;74:453-76 PMCID:PMC2937523

[30]

Boon E,Whidden C,Langille MG.Interactions in the microbiome: communities of organisms and communities of genes.FEMS Microbiol Rev2014;38:90-118 PMCID:PMC4298764

[31]

Hassani MA,Hacquard S.Microbial interactions within the plant holobiont.Microbiome2018;6:58 PMCID:PMC5870681

[32]

Mathis KA.Our current understanding of commensalism.Annu Rev Ecol Evol Syst2020;51:167-89

[33]

Spor A,Ley R.Unravelling the effects of the environment and host genotype on the gut microbiome.Nat Rev Microbiol2011;9:279-90

[34]

Orland C,Basiliko N,Gunn JM.Microbiome functioning depends on individual and interactive effects of the environment and community structure.ISME J2019;13:1-11 PMCID:PMC6298968

[35]

Franzosa EA,Sirota-Madi A.Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling.Nat Rev Microbiol2015;13:360-72 PMCID:PMC4800835

[36]

Sunagawa S, Coelho LP, Chaffron S, et al; Tara Oceans coordinators. Ocean plankton. Structure and function of the global ocean microbiome. Science 2015;348:1261359.

[37]

Fierer N.Embracing the unknown: disentangling the complexities of the soil microbiome.Nat Rev Microbiol2017;15:579-90

[38]

Campanaro S,Rodriguez-R LM.New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters.Biotechnol Biofuels2020;13:25 PMCID:PMC7038595

[39]

Heinken A,Thiele I.Advances in constraint-based modelling of microbial communities.Curr Opin Syst Biol2021;27:100346

[40]

Roume H,Muller EEL.Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks.NPJ Biofilms Microbiomes2015;1:15007 PMCID:PMC5515219

[41]

Muller EE,May P,Wilmes P.Condensing the omics fog of microbial communities.Trends Microbiol2013;21:325-33

[42]

O’Brien EJ,Palsson BO.Using genome-scale models to predict biological capabilities.Cell2015;161:971-87 PMCID:PMC4451052

[43]

Sen P.Metabolic modeling of human gut microbiota on a genome scale: an overview.Metabolites2019;9:22 PMCID:PMC6410263

[44]

Palsson . Systems biology: properties of reconstructed networks. Cambridge university press; 2006. Available from: https://books.google.com/books/about/Systems_Biology.html?id=Q-EvI9j0B7YC. [Last accessed on 23 May 2024]

[45]

Dahal S,Xu H,Yang L.Synthesizing systems biology knowledge from omics using genome-scale models.Proteomics2020;20:e1900282 PMCID:PMC7501203

[46]

Orth JD,Palsson .What is flux balance analysis?.Nat Biotechnol2010;28:245-8 PMCID:PMC3108565

[47]

Chan SHJ,Maranas CD.SteadyCom: predicting microbial abundances while ensuring community stability.PLoS Comput Biol2017;13:e1005539 PMCID:PMC5448816

[48]

Zomorrodi AR.OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities.PLoS Comput Biol2012;8:e1002363 PMCID:PMC3271020

[49]

Thiele I,Fleming RM.A systems biology approach to studying the role of microbes in human health.Curr Opin Biotechnol2013;24:4-12

[50]

Khandelwal RA,Röling WF,Bruggeman FJ.Community flux balance analysis for microbial consortia at balanced growth.PLoS One2013;8:e64567 PMCID:PMC3669319

[51]

Zomorrodi AR,Maranas CD.d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities.ACS Synth Biol2014;3:247-57

[52]

Gottstein W,Bruggeman FJ.Constraint-based stoichiometric modelling from single organisms to microbial communities.J R Soc Interface2016;13:20160627 PMCID:PMC5134014

[53]

Mahadevan R,Doyle FJ 3rd.Dynamic flux balance analysis of diauxic growth in Escherichia coli.Biophys J2002;83:1331-40 PMCID:PMC1302231

[54]

Zhuang K,Mouser P.Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments.ISME J2011;5:305-16 PMCID:PMC3105697

[55]

Badr K,Wang J.Understanding the evolution of interspecies metabolic interactions using dynamic genome-scale metabolic modeling. In: 2022 American Control Conference (ACC); 2022 Jun 08-10; Atlanta, USA. IEEE; 2022. pp. 450-5.

[56]

de la Torre A,Chu F.Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1).Microb Cell Fact2015;14:188 PMCID:PMC4658805

[57]

Yoshikawa K,Kojima Y.Construction of a genome-scale metabolic model of Arthrospira platensis NIES-39 and metabolic design for cyanobacterial bioproduction.PLoS One2015;10:e0144430 PMCID:PMC4671677

[58]

Damiani A,Wang J.A system identification based framework for genome-scale metabolic model validation and refinement.IFAC PapersOnLine2017;50:12502-7

[59]

Gilman A,Hendershott M.Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C.PeerJ2017;5:e3945 PMCID:PMC5652258

[60]

Stone K,Badr K,He QP.Comparative study of oxygen-limited and methane-limited growth phenotypes of Methylomicrobium buryatense 5GB1.Biochem Eng J2020;161:107707

[61]

Yoshikawa K,Shimizu H.Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis.Bioprocess Biosyst Eng2017;40:791-6

[62]

Peltier G,Shikanai T.NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis.Annu Rev Plant Biol2016;67:55-80

[63]

Heinken A.Anoxic conditions promote species-specific mutualism between gut microbes in silico.Appl Environ Microbiol2015;81:4049-61 PMCID:PMC4524141

[64]

Fu Y,Lidstrom M.The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1.Metab Eng2017;42:43-51

[65]

Nguyen DTN,Hadiyati S,Kim MS.Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane.Metab Eng2019;54:170-9

[66]

Wang JH,Dao GH,Wang XX.Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.Appl Microbiol Biotechnol2017;101:2659-75

[67]

Zhang B,Guo Y.Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications.Renew Sustain Energy Rev2020;118:109563

[68]

Ramanan R,Cho DH,Kim HS.Algae-bacteria interactions: evolution, ecology and emerging applications.Biotechnol Adv2016;34:14-29

[69]

de-Bashan LE,Bebout BM.Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (fluorescent in situ hybridization).Algal Res2016;15:179-86

[70]

Crable BR,McInerney MJ.Formate formation and formate conversion in biological fuels production.Enzyme Res2011;2011:532536 PMCID:PMC3112519

[71]

Riccardi G,Milano A.Amino acid biosynthesis and its regulation in cyanobacteria.Plant Science1989;64:135-51

[72]

Zhu J,Yuan M,Ma Z.Optimum O2:CH4 ratio promotes the synergy between aerobic methanotrophs and denitrifiers to enhance nitrogen removal.Front Microbiol2017;8:1112 PMCID:PMC5472701

[73]

Renslow RS,Cole JK,Anderton CR.Quantifying element incorporation in multispecies biofilms using nanoscale secondary ion mass spectrometry image analysis.Biointerphases2016;11:02A322 PMCID:PMC5848783

[74]

Oosthuizen JR,Rossouw D.Evolution of mutualistic behaviour between Chlorella sorokiniana and Saccharomyces cerevisiae within a synthetic environment.J Ind Microbiol Biotechnol2020;47:357-72

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/