Cataloging metagenome-assembled genomes and microbial genes from the athlete gut microbiome

Laura Wosinska , Liam H. Walsh , Calum J. Walsh , Paul D. Cotter , Caitriona M. Guinane , Orla O’Sullivan

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (4) : 41

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (4) :41 DOI: 10.20517/mrr.2023.69
Original Article

Cataloging metagenome-assembled genomes and microbial genes from the athlete gut microbiome

Author information +
History +
PDF

Abstract

Aim: Exercise has been increasingly recognized as a potential influencer of the gut microbiome. Nevertheless, findings remain incongruous, particularly in relation to sport-specific patterns.

Methods: In this study, we harness all publicly available data from athlete gut microbiome shotgun studies to explore how exercise may influence the gut microbiota through metagenomic assembly supplemented with short read-based taxonomic profiling. Through this analysis, we provide insights into exercise-associated taxa and genes, including the identification and annotation of putative novel species from the analysis of approximately 2,000 metagenome-assembled genomes (MAGs), classified as high-quality (HQ) MAGs and assembled as part of this investigation.

Results: Our metagenomic analysis unveiled potential athlete-associated microbiome patterns at both the phylum and species levels, along with their associated microbial genes, across a diverse array of sports and individuals. Specifically, we identified 76 species linked to exercise, with a notable prevalence of the Firmicutes phylum. Furthermore, our analysis detected MAGs representing potential novel species across various phyla, including Bacteroidota, Candidatus Melainabacteria, Elusimicrobia, Firmicutes, Lentisphaerae, Proteobacteria, Tenericutes, and Verrucomicrobiota.

Conclusion: In summary, this catalog of MAGs and their corresponding genes stands as the most extensive collection yet compiled from athletes. Our analysis has discerned patterns in genes associated with exercise. This underscores the value of employing shotgun metagenomics, specifically a MAG recovery strategy, for pinpointing sport-associated microbiome signatures. Furthermore, the identification of novel MAGs holds promise for developing probiotics and deepening our comprehension of the intricate interplay between fitness and the microbiome.

Keywords

Athlete / microbiome / MAGs / genes / novel species / in silico

Cite this article

Download citation ▾
Laura Wosinska, Liam H. Walsh, Calum J. Walsh, Paul D. Cotter, Caitriona M. Guinane, Orla O’Sullivan. Cataloging metagenome-assembled genomes and microbial genes from the athlete gut microbiome. Microbiome Research Reports, 2024, 3(4): 41 DOI:10.20517/mrr.2023.69

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Karasov WH,Caviedes-Vidal E.Ecological physiology of diet and digestive systems.Annu Rev Physiol2011;73:69-93

[2]

LeBlanc JG,de Giori GS,van Sinderen D.Bacteria as vitamin suppliers to their host: a gut microbiota perspective.Curr Opin Biotechnol2013;24:160-8

[3]

Kamada N,Chen GY.Role of the gut microbiota in immunity and inflammatory disease.Nat Rev Immunol2013;13:321-35

[4]

Hooper LV,Macpherson AJ.Interactions between the microbiota and the immune system.Science2012;336:1268-73 PMCID:PMC4420145

[5]

Sommer F.The gut microbiota - masters of host development and physiology.Nat Rev Microbiol2013;11:227-38

[6]

O’Donovan CM,Cotter PD.4.54 - Gut microbiology - A relatively unexplored domain. In: Comprehensive biotechnology (Third edition). Oxford: Pergamon; 2018. pp. 629-48.

[7]

Nystoriak MA.Cardiovascular effects and benefits of exercise.Front Cardiovasc Med2018;5:135 PMCID:PMC6172294

[8]

Sharma A,Petty FD.Exercise for mental health.Prim Care Companion J Clin Psychiatry2006;8:106 PMCID:PMC1470658

[9]

Brown DW,Heath GW.Associations between physical activity dose and health-related quality of life.Med Sci Sports Exerc2004;36:890-6

[10]

Clarke SF,O’Sullivan O.Exercise and associated dietary extremes impact on gut microbial diversity.Gut2014;63:1913-20

[11]

Barton W,Cronin O.The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level.Gut2018;67:625-33

[12]

Scheiman J,Chavkin TA.Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism.Nat Med2019;25:1104-9 PMCID:PMC7368972

[13]

Munukka E,Puigbó P.Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women.Front Microbiol2018;9:2323 PMCID:PMC6178902

[14]

Petersen LM,Nguyen H.Community characteristics of the gut microbiomes of competitive cyclists.Microbiome2017;5:98 PMCID:PMC5553673

[15]

Bressa C,Pérez-Santiago J.Differences in gut microbiota profile between women with active lifestyle and sedentary women.PLoS One2017;12:e0171352 PMCID:PMC5302835

[16]

Allen JM,Niemiro GM.Exercise alters gut microbiota composition and function in lean and obese humans.Med Sci Sports Exerc2018;50:747-57

[17]

Jang LG,Kim SW,Lee S.The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study.J Int Soc Sports Nutr2019;16:21 PMCID:PMC6500072

[18]

Cella V,Sabato C.Nutrition and physical activity-induced changes in gut microbiota: possible implications for human health and athletic performance.Foods2021;10:3075 PMCID:PMC8700881

[19]

O’Donovan CM,Garcia-Perez I,O’Sullivan O.Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes.J Sci Med Sport2020;23:63-8

[20]

Cullen JMA,Dhillon J.A systematic review on the effects of exercise on gut microbial diversity, taxonomic composition, and microbial metabolites: identifying research gaps and future directions.Front Physiol2023;14:1292673 PMCID:PMC10770260

[21]

O’Donovan CM,Madigan SM,O’Sullivan O.Instances of altered gut microbiomes among Irish cricketers over periods of travel in the lead up to the 2016 World Cup: a sequencing analysis.Travel Med Infect Dis2020;35:101553

[22]

Cronin O,Skuse P.A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults.mSystems2018;3:e00044-18 PMCID:PMC5915698

[23]

Langmead B.Fast gapped-read alignment with Bowtie 2.Nat Methods2012;9:357-9 PMCID:PMC3322381

[24]

Langmead B,Pop M.Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.Genome Biol2009;10:R25 PMCID:PMC2690996

[25]

Pasolli E,Manara S.Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle.Cell2019;176:649-62.e20 PMCID:PMC6349461

[26]

Chklovski A,Woodcroft BJ.CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning.Nat Methods2023;20:1203-12

[27]

Bowers RM, Kyrpides NC, Stepanauskas R, et al; Genome Standards Consortium. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017;35:725-31. PMCID:PMC6436528

[28]

Seemann T.Prokka: rapid prokaryotic genome annotation.Bioinformatics2014;30:2068-9

[29]

Asnicar F,Beghini F.Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0.Nat Commun2020;11:2500 PMCID:PMC7237447

[30]

Olm MR,Brooks B.dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication.ISME J2017;11:2864-8 PMCID:PMC5702732

[31]

Page AJ,Hunt M.Roary: rapid large-scale prokaryote pan genome analysis.Bioinformatics2015;31:3691-3 PMCID:PMC4817141

[32]

Brynildsrud O,Scheffer L.Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary.Genome Biol2016;17:238 PMCID:PMC5124306

[33]

Li D.hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers.J Open Source Softw2018;3:1041

[34]

vegan: Community ecology package. 2024. Available from: https://CRAN.R-project.org/package=vegan. [Last accessed on 15 Jul 2024]

[35]

Anderson MJ.Permutational multivariate analysis of variance (PERMANOVA). In: Wiley StatsRef: statistics reference online. 2017. pp. 1-15.

[36]

Martinez Arbizu P. pairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4. 2020. Available from: https://github.com/pmartinezarbizu/pairwiseAdonis. [Last accessed on 15 Jul 2024]

[37]

Mallick H,McIver LJ.Multivariable association discovery in population-scale meta-omics studies.PLoS Comput Biol2021;17:e1009442 PMCID:PMC8714082

[38]

Wilkinson L.ggplot2: elegant graphics for data analysis by WICKHAM, H.Biometrics2011;67:678-9

[39]

Zhao X,Hu B,Yuan C.Response of gut microbiota to metabolite changes induced by endurance exercise.Front Microbiol2018;9:765 PMCID:PMC5920010

[40]

Du X,Lou F.Microbial community and short-chain fatty acid mapping in the intestinal tract of quail.Animals2020;10:1006 PMCID:PMC7341218

[41]

Louis P.Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.FEMS Microbiol Lett2009;294:1-8

[42]

Nilsen M,Angell IL.Butyrate levels in the transition from an infant- to an adult-like gut microbiota correlate with bacterial networks associated with Eubacterium Rectale and Ruminococcus Gnavus.Genes2020;11:1245 PMCID:PMC7690385

[43]

Parker BJ,Veloo ACM.The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health.Front Immunol2020;11:906 PMCID:PMC7296073

[44]

Liu Y,Ye F,Jiang H.Gut microbiota-derived short-chain fatty acids promote prostate cancer progression via inducing cancer cell autophagy and M2 macrophage polarization.Neoplasia2023;43:100928 PMCID:PMC10429288

[45]

Jiang H,Zhang Y.Altered fecal microbiota composition in patients with major depressive disorder.Brain Behav Immun2015;48:186-94

[46]

Dziarski R,Kashyap DR,Gupta D.Pglyrp-regulated gut microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice.PLoS One2016;11:e0146162 PMCID:PMC4699708

[47]

Zuo K,Li K.Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation.Gigascience2019;8:giz058 PMCID:PMC6543127

[48]

Qin P,Dai Y,Zhang X.Characterization a novel butyric acid-producing bacterium Collinsella aerofaciens subsp. Shenzhenensis subsp. nov.Microorganisms2019;7:78 PMCID:PMC6463082

[49]

Rossi O,Chain F.Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses.Sci Rep2016;6:18507 PMCID:PMC4698756

[50]

Faden H.The role of Faecalibacterium, Roseburia, and butyrate in inflammatory bowel disease.Dig Dis2022;40:793-5

[51]

King CH,Sylvetsky AC.Baseline human gut microbiota profile in healthy people and standard reporting template.PLoS One2019;14:e0206484 PMCID:PMC6738582

[52]

Takai N,Oyama T.A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria.Proc Natl Acad Sci U S A2006;103:12109-14 PMCID:PMC1832256

[53]

Kaatz GW,Seo SM.Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein.Antimicrob Agents Chemother2005;49:1857-64 PMCID:PMC1087643

[54]

Pirovich DB,Skelly PJ.Multifunctional fructose 1,6-bisphosphate aldolase as a therapeutic target.Front Mol Biosci2021;8:719678 PMCID:PMC8385298

[55]

Tyagi R,Guddat LW.Probing the mechanism of the bifunctional enzyme ketol-acid reductoisomerase by site-directed mutagenesis of the active site.FEBS J2005;272:593-602

[56]

Miyamoto T.Gluconeogenesis: an ancient biochemical pathway with a new twist.Fly2017;11:218-23 PMCID:PMC5552273

[57]

Medina V,Glaeske D,Goldie H.Sequence of the pckA gene of Escherichia coli K-12: relevance to genetic and allosteric regulation and homology of E. coli phosphoenolpyruvate carboxykinase with the enzymes from Trypanosoma brucei and Saccharomyces cerevisiae.J Bacteriol1990;172:7151-6 PMCID:PMC210840

[58]

Walsh LH,Walsh AM,Cotter PD.Bioinformatic approaches for studying the microbiome of fermented food.Crit Rev Microbiol2023;49:693-725

[59]

Mavromatis K,Barry K.Use of simulated data sets to evaluate the fidelity of metagenomic processing methods.Nat Methods2007;4:495-500

[60]

Schloss PD.A statistical toolbox for metagenomics: assessing functional diversity in microbial communities.BMC Bioinformatics2008;9:34 PMCID:PMC2238731

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/