PDF
Abstract
Aim: Our gut microbiome has its own functionalities which can be modulated by various xenobiotic and biotic components. The development and application of a high-throughput functional screening approach of individual gut microbiomes accelerates drug discovery and our understanding of microbiome-drug interactions. We previously developed the rapid assay of individual microbiome (RapidAIM), which combined an optimized culturing model with metaproteomics to study gut microbiome responses to xenobiotics. In this study, we aim to incorporate automation and multiplexing techniques into RapidAIM to develop a high-throughput protocol.
Methods: To develop a 2.0 version of RapidAIM, we automated the protein analysis protocol, and introduced a tandem mass tag (TMT) multiplexing technique. To demonstrate the typical outcome of the protocol, we used RapidAIM 2.0 to evaluate the effect of prebiotic kestose on ex vivo individual human gut microbiomes biobanked with five different workflows.
Results: We describe the protocol of RapidAIM 2.0 with extensive details on stool sample collection, biobanking, in vitro culturing and stimulation, sample processing, metaproteomics measurement, and data analysis. The analysis depth of 5,014 ± 142 protein groups per multiplexed sample was achieved. A test on five biobanking methods using RapidAIM 2.0 showed the minimal effect of sample processing on live microbiota functional responses to kestose.
Conclusions: Depth and reproducibility of RapidAIM 2.0 are comparable to previous manual label-free metaproteomic analyses. In the meantime, the protocol realizes culturing and sample preparation of 320 samples in six days, opening the door to extensively understanding the effects of xenobiotic and biotic factors on our internal ecology.
Keywords
Gut microbiome
/
metaproteomics
/
high-throughput in vitro assay
/
biobanking
/
functional responses
Cite this article
Download citation ▾
Leyuan Li, Janice Mayne, Adrian Beltran, Xu Zhang, Zhibin Ning, Daniel Figeys.
RapidAIM 2.0: a high-throughput assay to study functional response of human gut microbiome to xenobiotics.
Microbiome Research Reports, 2024, 3(2): 26 DOI:10.20517/mrr.2023.57
| [1] |
Maier L,Kuhn M.Extensive impact of non-antibiotic drugs on human gut bacteria.Nature2018;555:623-8 PMCID:PMC6108420
|
| [2] |
Klünemann M,Blasche S.Bioaccumulation of therapeutic drugs by human gut bacteria.Nature2021;597:533-8 PMCID:PMC7614428
|
| [3] |
Coyte KZ,Foster KR.The ecology of the microbiome: networks, competition, and stability.Science2015;350:663-6
|
| [4] |
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome.Nature2012;486:207-14 PMCID:PMC3564958
|
| [5] |
Falony G,Vieira-Silva S.Population-level analysis of gut microbiome variation.Science2016;352:560-4
|
| [6] |
Costea PI,Arumugam M.Enterotypes in the landscape of gut microbial community composition.Nat Microbiol2018;3:8-16 PMCID:PMC5832044
|
| [7] |
Faith JJ,Charbonneau M.The long-term stability of the human gut microbiota.Science2013;341:1237439 PMCID:PMC3791589
|
| [8] |
Shaw LP,Barnes CP,Klein N.Modelling microbiome recovery after antibiotics using a stability landscape framework.ISME J2019;13:1845-56 PMCID:PMC6591120
|
| [9] |
Palleja A,Forslund SK.Recovery of gut microbiota of healthy adults following antibiotic exposure.Nat Microbiol2018;3:1255-65
|
| [10] |
Jalili-Firoozinezhad S,Calamari EL.A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip.Nat Biomed Eng2019;3:520-31 PMCID:PMC6658209
|
| [11] |
Wilmes P.The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms.Environ Microbiol2004;6:911-20
|
| [12] |
Zhang X,Ning Z.Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease.Nat Commun2018;9:2873 PMCID:PMC6054643
|
| [13] |
Lehmann T,Vilchez-Vargas R.Metaproteomics of fecal samples of Crohn’s disease and Ulcerative Colitis.J Proteomics2019;201:93-103
|
| [14] |
Long S,Shen C.Metaproteomics characterizes human gut microbiome function in colorectal cancer.NPJ Biofilms Microbiomes2020;6:14 PMCID:PMC7093434
|
| [15] |
Zhong H,Lu Y.Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics.EBioMedicine2019;47:373-83 PMCID:PMC6796533
|
| [16] |
Chen Z,Gui S.Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive disorder.Neuroreport2018;29:417-25
|
| [17] |
Thuy-Boun PS,Gruening B.Metaproteomics analysis of SARS-CoV-2-infected patient samples reveals presence of potential coinfecting microorganisms.J Proteome Res2021;20:1451-4 PMCID:PMC7805602
|
| [18] |
Li L,Zhang X.RapidAIM: a culture- and metaproteomics-based Rapid Assay of Individual Microbiome responses to drugs.Microbiome2020;8:33 PMCID:PMC7066843
|
| [19] |
Li L,Ning Z.An in vitro model maintaining taxon-specific functional activities of the gut microbiome.Nat Commun2019;10:4146 PMCID:PMC6742639
|
| [20] |
Li L,Zhang X.Berberine and its structural analogs have differing effects on functional profiles of individual gut microbiomes.Gut Microbes2020;11:1348-61 PMCID:PMC7524264
|
| [21] |
Li L,Ning Z.A functional ecological network based on metaproteomics responses of individual gut microbiomes to resistant starches.Comput Struct Biotechnol J2020;18:3833-42 PMCID:PMC7720074
|
| [22] |
Sun Z,Li L.Comprehensive assessment of functional effects of commonly used sugar substitute sweeteners on ex vivo human gut microbiome.Microbiol Spectr2022;10:e0041222 PMCID:PMC9431030
|
| [23] |
Mayne J,Butcher J.Examining the effects of an anti-salmonella bacteriophage preparation, BAFASAL®, on ex-vivo human gut microbiome composition and function using a multi-omics approach.Viruses2021;13:1734 PMCID:PMC8473076
|
| [24] |
Wang X,Feng T.Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression.Cell Res2019;29:787-803 PMCID:PMC6796854
|
| [25] |
Le HH,Besler KR,Johnson EL.Characterization of interactions of dietary cholesterol with the murine and human gut microbiome.Nat Microbiol2022;7:1390-403 PMCID:PMC9417993
|
| [26] |
Liu H,Wu L.Ecological dynamics of the gut microbiome in response to dietary fiber.ISME J2022;16:2040-55 PMCID:PMC9296629
|
| [27] |
Argentini C,Alessandri G.Exploring the ecological effects of naturally antibiotic-insensitive bifidobacteria in the recovery of the resilience of the gut microbiota during and after antibiotic treatment.Appl Environ Microbiol2022;88:e0052222 PMCID:PMC9238419
|
| [28] |
Lei C,Teng Y.Lemon exosome-like nanoparticles-manipulated probiotics protect mice from C. diff infection.iScience2020;23:101571 PMCID:PMC7530291
|
| [29] |
Zhang L.Relative protein quantification using tandem mass tag mass spectrometry. Methods Mol Biol 2017;1550:185-98.
|
| [30] |
Zecha J,Kanashova T.TMT labeling for the masses: a robust and cost-efficient, in-solution labeling approach.Mol Cell Proteomics2019;18:1468-78 PMCID:PMC6601210
|
| [31] |
Gonzalez CG,Topf M,Sonnenburg JL.High-throughput stool metaproteomics: method and application to human specimens.mSystems2020;5:e00200-20 PMCID:PMC7329322
|
| [32] |
Burns AP,Xu T.A universal and high-throughput proteomics sample preparation platform.Anal Chem2021;93:8423-31 PMCID:PMC9876622
|
| [33] |
Zhang X,Mayne J,Stintzi A.Assessing the impact of protein extraction methods for human gut metaproteomics.J Proteomics2018;180:120-7
|
| [34] |
Creskey M,Ning Z.An economic and robust TMT labeling approach for high throughput proteomic and metaproteomic analysis.Proteomics2023;23:e2200116
|
| [35] |
Zhang X,Mayne J.Evaluating live microbiota biobanking using an ex vivo microbiome assay and metaproteomics.Gut Microbes2022;14:2035658 PMCID:PMC8824213
|
| [36] |
Li L,Ning Z.Evaluating in vitro culture medium of gut microbiome with orthogonal experimental design and a metaproteomics approach.J Proteome Res2018;17:154-63
|
| [37] |
Li J,Cai X.MetaHIT ConsortiumAn integrated catalog of reference genes in the human gut microbiome.Nat Biotechnol2014;32:834-41
|
| [38] |
Huang T,Tzouros M.MSstatsTMT: statistical detection of differentially abundant proteins in experiments with isobaric labeling and multiple mixtures.Mol Cell Proteomics2020;19:1706-23 PMCID:PMC8015007
|
| [39] |
Li L,Cheng K,Simopoulos CMA.iMetaLab Suite: a one-stop toolset for metaproteomics.iMeta2022;1:e25
|
| [40] |
Čuklina J,Williams EG.Diagnostics and correction of batch effects in large-scale proteomic studies: a tutorial.Mol Syst Biol2021;17:e10240 PMCID:PMC8447595
|
| [41] |
Kelly BJ,Bittinger K.Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.Bioinformatics2015;31:2461-8 PMCID:PMC4514928
|