Microbiota-gut-liver-brain axis and hepatic encephalopathy

Haifeng Lu , Hua Zhang , Zhongwen Wu , Lanjuan Li

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (2) : 17

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (2) :17 DOI: 10.20517/mrr.2023.44
Review

Microbiota-gut-liver-brain axis and hepatic encephalopathy

Author information +
History +
PDF

Abstract

Hepatic encephalopathy (HE) is a clinical manifestation of neurological and psychiatric abnormalities that are caused by complications of liver dysfunction including hyperammonemia, hyperuricemia, and portal hypertension. Accumulating evidence suggests that HE could be reversed through therapeutic modifications of gut microbiota. Multiple preclinical and clinical studies have indicated that gut microbiome affects the physiological function of the liver, such as the regulation of metabolism, secretion, and immunity, through the gut-liver crosstalk. In addition, gut microbiota also influences the brain through the gut-brain crosstalk, altering its physiological functions including the regulation of the immune, neuroendocrine, and vagal pathways. Thus, key molecules that are involved in the microbiota-gut-liver-brain axis might be able to serve as clinical biomarkers for early diagnosis of HE, and could be effective therapeutic targets for clinical interventions. In this review, we summarize the pathophysiology of HE and further propose approaches modulating the microbiota-gut-liver-brain axis in order to provide a comprehensive understanding of the prevention and potential clinical treatment for HE with a microbiota-targeted therapy.

Keywords

Hepatic encephalopathy / hyperammonemia / gut microbiota-liver-brain axis / microbiome-targeted therapy

Cite this article

Download citation ▾
Haifeng Lu, Hua Zhang, Zhongwen Wu, Lanjuan Li. Microbiota-gut-liver-brain axis and hepatic encephalopathy. Microbiome Research Reports, 2024, 3(2): 17 DOI:10.20517/mrr.2023.44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zuo L,Wang Q.Early-recurrent overt hepatic encephalopathy is associated with reduced survival in cirrhotic patients after transjugular intrahepatic portosystemic shunt creation.J Vasc Interv Radiol2019;30:148-53.e2

[2]

Clayton M.Hepatic encephalopathy: causes and health-related burden.Br J Nurs2018;27:S4-6

[3]

Fischer JE,Falcao HA.L-dopa in hepatic coma.Ann Surg1976;183:386-91 PMCID:PMC1344209

[4]

Xu XY,Li WG.Chinese guidelines on management of hepatic encephalopathy in cirrhosis.World J Gastroenterol2019;25:5403-22 PMCID:PMC6767982

[5]

Pabst O,Schaap FG,Clavel T.Gut-liver axis: barriers and functional circuits.Nat Rev Gastroenterol Hepatol2023;20:447-61

[6]

Kilgore A.The bidirectional brain-gut-microbiome axis in pediatrics: what we know and what lies ahead.J Pediatr Gastroenterol Nutr2023;77:147-9

[7]

Smith ML,Wolstenholme J.Gut microbiome-brain-cirrhosis axis.Hepatology2023;Online ahead of print: PMCID:PMC10480351

[8]

Wang PYT,Lam CKL.Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production.Nature2008;452:1012-6

[9]

Stadlbauer V,Jalan R.Role of artificial liver support in hepatic encephalopathy.Metab Brain Dis2009;24:15-26

[10]

Pennisi E.Human genome 10th anniversary. Digging deep into the microbiome.Science2011;331:1008-9

[11]

Li F,Han Y.Dietary pterostilbene inhibited colonic inflammation in dextran-sodium-sulfate-treated mice: a perspective of gut microbiota.Infect Microbes Dis2021;3:22-9

[12]

Zeevi D,Godneva A.Structural variation in the gut microbiome associates with host health.Nature2019;568:43-8

[13]

Yang Y,Tao S.Evaluation of the mechanisms underlying amino acid and microbiota interactions in intestinal infections using germ-free animals.Infect Microbes Dis2021;3:79-86

[14]

Moore MD,Zhou Y.Microbiota, Viral infection, and the relationship to human diseases: an area of increasing interest in the SARS-CoV-2 pandemic.Infect Microbes Dis2021;3:1-3 PMCID:PMC8011341

[15]

Segre JA.MICROBIOME. Microbial growth dynamics and human disease.Science2015;349:1058-9

[16]

Morais LH,Mazmanian SK.The gut microbiota-brain axis in behaviour and brain disorders.Nat Rev Microbiol2021;19:241-55

[17]

Martin CR,Kalani A.The brain-gut-microbiome axis.Cell Mol Gastroenterol Hepatol2018;6:133-48 PMCID:PMC6047317

[18]

Laue HE,Madan JC.The developing microbiome from birth to 3 years: the gut-brain axis and neurodevelopmental outcomes.Front Pediatr2022;10:815885 PMCID:PMC8936143

[19]

Niemarkt HJ,van Ganzewinkel CJ.Necrotizing enterocolitis, gut microbiota, and brain development: role of the brain-gut axis.Neonatology2019;115:423-31 PMCID:PMC6604259

[20]

Bauer KC,Finlay BB.Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis.Cell Microbiol2016;18:632-44

[21]

Heinzel S,Suenkel U.Gut microbiome signatures of risk and prodromal markers of Parkinson disease.Ann Neurol2021;90:E1-12

[22]

Tan AH,Lang AE.The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic.Nat Rev Neurol2022;18:476-95

[23]

Quigley EMM.The gut-brain axis and the microbiome: clues to pathophysiology and opportunities for novel management strategies in irritable bowel syndrome (IBS).J Clin Med2018;7:6 PMCID:PMC5791014

[24]

Sharon G,Geschwind DH.The central nervous system and the gut microbiome.Cell2016;167:915-32 PMCID:PMC5127403

[25]

Das De T,Tevatiya S.Bidirectional microbiome-gut-brain-axis communication influences metabolic switch-associated responses in the mosquito anopheles culicifacies.Cells2022;11:1798 PMCID:PMC9180301

[26]

Ren Z,Jiang J.Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma.Gut2019;68:1014-23 PMCID:PMC6580753

[27]

Rager SL.The gut-liver axis in pediatric liver health and disease.Microorganisms2023;11:597 PMCID:PMC10051507

[28]

Qin N,Li A.Alterations of the human gut microbiome in liver cirrhosis.Nature2014;513:59-64

[29]

Forsythe P,Kunze WA.Vagal pathways for microbiome-brain-gut axis communication.Adv Exp Med Biol2014;817:115-33

[30]

Teratani T,Nakamoto N.The liver-brain-gut neural arc maintains the Treg cell niche in the gut.Nature2020;585:591-6

[31]

Dollé JP,Browne KD,Gai F.Newfound effect of N-acetylaspartate in preventing and reversing aggregation of amyloid-beta in vitro.Neurobiol Dis2018;117:161-9 PMCID:PMC6553457

[32]

Warepam M,Sharma GS.Brain metabolite, N-acetylaspartate is a potent protein aggregation inhibitor.Front Cell Neurosci2021;15:617308 PMCID:PMC7894078

[33]

Veiga-da-Cunha M,Stroobant V,Opperdoes FR.Molecular identification of NAT8 as the enzyme that acetylates cysteine S-conjugates to mercapturic acids.J Biol Chem2010;285:18888-98 PMCID:PMC2881811

[34]

Wang HX.Gut microbiota-brain axis.Chin Med J2016;129:2373-80 PMCID:PMC5040025

[35]

Ruggiero DA,Otake K.Central and primary visceral afferents to nucleus tractus solitarii may generate nitric oxide as a membrane-permeant neuronal messenger.J Comp Neurol1996;364:51-67

[36]

Mohammadi MS,Cazals-Hatem D.Possible mechanisms involved in the discrepancy of hepatic and aortic endothelial nitric oxide synthases during the development of cirrhosis in rats.Liver Int2009;29:692-700

[37]

Nandeesha H,Manjusha J,Kadhiravan T.Pentraxin-3 and nitric oxide as indicators of disease severity in alcoholic cirrhosis.Br J Biomed Sci2015;72:156-9

[38]

Tse JKY.Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders.ACS Chem Neurosci2017;8:1438-47

[39]

Williams R.Review article: bacterial flora and pathogenesis in hepatic encephalopathy.Aliment Pharmacol Ther2007;25:17-22

[40]

Bajaj JS.The role of microbiota in hepatic encephalopathy.Gut Microbes2014;5:397-403 PMCID:PMC4153779

[41]

Rai R,Dhiman RK.Gut microbiota: its role in hepatic encephalopathy.J Clin Exp Hepatol2015;5:S29-36 PMCID:PMC4442863

[42]

Tilg H,Trauner M.Gut-liver axis: pathophysiological concepts and clinical implications.Cell Metab2022;34:1700-18

[43]

Parekh PJ.Ammonia and its role in the pathogenesis of hepatic encephalopathy.Clin Liver Dis2015;19:529-37

[44]

Busnelli M,Chiesa G.The gut microbiota affects host pathophysiology as an endocrine organ: a focus on cardiovascular disease.Nutrients2019;12:79 PMCID:PMC7019666

[45]

Clarke G,Kennedy PJ,Cryan JF.Minireview: gut microbiota: the neglected endocrine organ.Mol Endocrinol2014;28:1221-38 PMCID:PMC5414803

[46]

Roager HM.Microbial tryptophan catabolites in health and disease.Nat Commun2018;9:3294 PMCID:PMC6098093

[47]

Agus A,Sokol H.Gut microbiota regulation of tryptophan metabolism in health and disease.Cell Host Microbe2018;23:716-24

[48]

Kidron H,Johnson MS.Functional classification of amino acid decarboxylases from the alanine racemase structural family by phylogenetic studies.Mol Biol Evol2007;24:79-89

[49]

Tillisch K.Neuroimaging the microbiome-gut-brain axis.Adv Exp Med Biol2014;817:405-16

[50]

Prinsloo S.The microbiome, gut-brain-axis, and implications for brain health.NeuroRegulation2015;2:158-61 PMCID:PMC5611854

[51]

Aldridge DR,Shawcross DL.Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation.J Clin Exp Hepatol2015;5:S7-20 PMCID:PMC4442852

[52]

Jalan R,Davies N.The molecular pathogenesis of hepatic encephalopathy.Int J Biochem Cell Biol2003;35:1175-81

[53]

Baltazar-Díaz TA,Aldana-Ledesma JM.Escherichia/Shigella, SCFAs, and metabolic pathways - the triad that orchestrates intestinal dysbiosis in patients with decompensated alcoholic cirrhosis from Western Mexico.Microorganisms2022;10:1231 PMCID:PMC9229093

[54]

Bloom PP,Miller KJ.Deep stool microbiome analysis in cirrhosis reveals an association between short-chain fatty acids and hepatic encephalopathy.Ann Hepatol2021;25:100333

[55]

Bellono NW,Leitch DB.Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways.Cell2017;170:185-98.e16 PMCID:PMC5839326

[56]

Engevik MA,Visuthranukul C.Human-derived Bifidobacterium dentium modulates the mammalian serotonergic system and gut-brain axis.Cell Mol Gastroenterol Hepatol2021;11:221-48 PMCID:PMC7683275

[57]

Marizzoni M,Mirabelli P.Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease.J Alzheimers Dis2020;78:683-97

[58]

Pedersen SS,Sørensen C.Targeted delivery of butyrate improves glucose homeostasis, reduces hepatic lipid accumulation and inflammation in db/db mice.Int J Mol Sci2023;24:4533 PMCID:PMC10002599

[59]

Liu T,Liu Y.Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells.Inflammation2012;35:1676-84

[60]

Li T.Bile acid signaling in metabolic disease and drug therapy.Pharmacol Rev2014;66:948-83 PMCID:PMC4180336

[61]

Russell DW.The enzymes, regulation, and genetics of bile acid synthesis.Annu Rev Biochem2003;72:137-74

[62]

Perino A,Velazquez-Villegas L.Molecular physiology of bile acid signaling in health, disease, and aging.Physiol Rev2021;101:683-731

[63]

Münzker J,Till A.Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity.Microbiome2022;10:96 PMCID:PMC9229785

[64]

Thibaut MM.Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation.Trends Mol Med2022;28:223-36

[65]

Hu MM,Gao P.Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity.Cell Res2019;29:193-205 PMCID:PMC6460433

[66]

Studer E,Zhao R.Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes.Hepatology2012;55:267-76 PMCID:PMC3245352

[67]

Fukuzaki Y,Lecuyer M,Vexler ZS.Global sphingosine-1-phosphate receptor 2 deficiency attenuates neuroinflammation and ischemic-reperfusion injury after neonatal stroke.iScience2023;26:106340 PMCID:PMC10064246

[68]

Xie G,Jiang R.Dysregulated bile acid signaling contributes to the neurological impairment in murine models of acute and chronic liver failure.EBioMedicine2018;37:294-306 PMCID:PMC6284422

[69]

Xie G,Wang X.Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis.EBioMedicine2021;66:103290 PMCID:PMC8010625

[70]

Williams E,DeMorrow S.A critical review of bile acids and their receptors in hepatic encephalopathy.Anal Biochem2022;643:114436 PMCID:PMC9798441

[71]

Jia W,Kaddurah-Daouk R.Expert insights: The potential role of the gut microbiome-bile acid-brain axis in the development and progression of Alzheimer’s disease and hepatic encephalopathy.Med Res Rev2020;40:1496-507

[72]

Schoeler M.Dietary lipids, gut microbiota and lipid metabolism.Rev Endocr Metab Disord2019;20:461-72 PMCID:PMC6938793

[73]

Mendrek A.Sex steroid hormones and brain function associated with cognitive and emotional processing in schizophrenia.Expert Rev Endocrinol Metab2013;8:1-3

[74]

Gazzotti P,Fleischer S.Role of lecithin in D-beta-hydroxybutyrate dehydrogenase function.Biochem Biophys Res Commun1974;58:309-15

[75]

Smith DGM.Immune sensing of microbial glycolipids and related conjugates by T cells and the pattern recognition receptors MCL and Mincle.Carbohydr Res2016;420:32-45

[76]

Yin Y,Ecker J.Gut microbiota promote liver regeneration through hepatic membrane phospholipid biosynthesis.J Hepatol2023;78:820-35

[77]

Burchill L.From the banal to the bizarre: unravelling immune recognition and response to microbial lipids.Chem Commun2022;58:925-40

[78]

He X,Liu Y.BAY61-3606 attenuates neuroinflammation and neurofunctional damage by inhibiting microglial Mincle/Syk signaling response after traumatic brain injury.Int J Mol Med2022;49:5 PMCID:PMC8612304

[79]

Greco SH,Kalabin A.Mincle signaling promotes Con A hepatitis.J Immunol2016;197:2816-27 PMCID:PMC5026929

[80]

Park BS.Recognition of lipopolysaccharide pattern by TLR4 complexes.Exp Mol Med2013;45:e66 PMCID:PMC3880462

[81]

Lucki NC.The interplay between bioactive sphingolipids and steroid hormones.Steroids2010;75:390-9 PMCID:PMC2854287

[82]

Kumari A,Asthana S.Bile acids mediated potential functional interaction between FXR and FATP5 in the regulation of Lipid Metabolism.Int J Biol Sci2020;16:2308-22 PMCID:PMC7378638

[83]

Zambusi A,Hutten S.TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury.Nat Neurosci2022;25:1608-25

[84]

Gluchowski NL,Walther TC.Lipid droplets and liver disease: from basic biology to clinical implications.Nat Rev Gastroenterol Hepatol2017;14:343-55 PMCID:PMC6319657

[85]

Mao K,Tamoutounour S.Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism.Nature2018;554:255-9

[86]

Fathallah-Shaykh SA.Uric acid and the kidney.Pediatr Nephrol2014;29:999-1008

[87]

Sari DCR,Soetoko AS.Uric acid induces liver fibrosis through activation of inflammatory mediators and proliferating hepatic stellate cell in mice.Med J Malaysia2020;75:14-8

[88]

Latourte A,Paquet C.Hyperuricemia, gout, and the brain - an update.Curr Rheumatol Rep2021;23:82

[89]

Koch M.Uric acid in multiple sclerosis.Neurol Res2006;28:316-9

[90]

Wei X,Huang S.Hyperuricemia: a key contributor to endothelial dysfunction in cardiovascular diseases.FASEB J2023;37:e23012

[91]

Méndez-Salazar EO.Uric acid extrarenal excretion: the gut microbiome as an evident yet understated factor in gout development.Rheumatol Int2022;42:403-12

[92]

Zhang L,Jin T,Ren X.Live and pasteurized Akkermansia muciniphila attenuate hyperuricemia in mice through modulating uric acid metabolism, inflammation, and gut microbiota.Food Funct2022;13:12412-25

[93]

Duan Z,Zhang F.The association between BMI and serum uric acid is partially mediated by gut microbiota.Microbiol Spectr2023;11:e0114023 PMCID:PMC10581133

[94]

Xu P,Shen S.The relationship between serum uric acid level and liver function in patients with hepatitis B in China.Clin Lab2021;1190

[95]

Tang X,Cardoso MA,Simó R.The relationship between uric acid and brain health from observational studies.Metab Brain Dis2022;37:1989-2003

[96]

Huang TT,Wu BN,Zhang J.Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2-ARE signaling pathway.Biochem Biophys Res Commun2017;493:1443-9

[97]

Zoccali C,Mallamaci F,Perticone F.Uric acid and endothelial dysfunction in essential hypertension.J Am Soc Nephrol2006;17:1466-71

[98]

Xiao J,Fu C.Soluble uric acid increases NALP3 inflammasome and interleukin-1β expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway.Int J Mol Med2015;35:1347-54

[99]

Watanabe T,Abe K.Increased lung uric acid deteriorates pulmonary arterial hypertension.J Am Heart Assoc2021;10:e022712 PMCID:PMC9075373

[100]

Bajaj JS,Hylemon PB.Linkage of gut microbiome with cognition in hepatic encephalopathy.Am J Physiol Gastrointest Liver Physiol2012;302:G168-75 PMCID:PMC3345956

[101]

Pan Q,Guo K.Elderly patients with mild cognitive impairment exhibit altered gut microbiota profiles.J Immunol Res2021;2021:5578958 PMCID:PMC8635943

[102]

Bajaj JS,Ridlon JM.Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation.Am J Physiol Gastrointest Liver Physiol2012;303:G675-85 PMCID:PMC3468538

[103]

Bajaj JS,White MB.Specific gut and salivary microbiota patterns are linked with different cognitive testing strategies in minimal hepatic encephalopathy.Am J Gastroenterol2019;114:1080-90 PMCID:PMC6610654

[104]

Bajaj JS,Patel NR.A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy.Metab Brain Dis2012;27:205-15

[105]

Cooper AJL.α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle.Metab Brain Dis2014;29:991-1006 PMCID:PMC4020999

[106]

Chen F,Zhang W.[Retracted] Risk factor analysis of hepatic encephalopathy and the establishment of diagnostic model.Biomed Res Int2022;2022:3475325 PMCID:PMC9325620

[107]

Qi R,Luo S.Default mode network functional connectivity: a promising biomarker for diagnosing minimal hepatic encephalopathy: CONSORT-compliant article.Medicine2014;93:e227 PMCID:PMC4602782

[108]

Claeys W,Lernout H.Experimental hepatic encephalopathy causes early but sustained glial transcriptional changes.J Neuroinflammation2023;20:130 PMCID:PMC10226265

[109]

Mincheva G,Izquierdo-Altarejos P.Golexanolone, a GABAA receptor modulating steroid antagonist, restores motor coordination and cognitive function in hyperammonemic rats by dual effects on peripheral inflammation and neuroinflammation.CNS Neurosci Ther2022;28:1861-74 PMCID:PMC9532914

[110]

Moran S,Milke-García MDP.Current approach to treatment of minimal hepatic encephalopathy in patients with liver cirrhosis.World J Gastroenterol2021;27:3050-63 PMCID:PMC8192295

[111]

Morgan TR,Mendenhall CL.Protein consumption and hepatic encephalopathy in alcoholic hepatitis. VA Cooperative Study Group #275.J Am Coll Nutr1995;14:152-8

[112]

Rudler M,Bouzbib C.Diagnosis and management of hepatic encephalopathy.Clin Liver Dis2021;25:393-417

[113]

Hudson M.Long-term management of hepatic encephalopathy with lactulose and/or rifaximin: a review of the evidence.Eur J Gastroenterol Hepatol2019;31:434-50 PMCID:PMC6416096

[114]

Mullish BH,Thursz MR.Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial.Hepatology2017;66:1354-5

[115]

Bajaj JS,Acharya C.Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial.Hepatology2019;70:1690-703 PMCID:PMC6819208

[116]

Kaji K,Saikawa S.Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity.World J Gastroenterol2017;23:8355-66 PMCID:PMC5743506

[117]

Holecek M.Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives.Metab Brain Dis2014;29:9-17 PMCID:PMC3930847

[118]

Mahpour NY,Reja M,Rustgi VK.Pharmacologic management of hepatic encephalopathy.Clin Liver Dis2020;24:231-42

[119]

Hu SH,Yang YX.Amino acids downregulate SIRT4 to detoxify ammonia through the urea cycle.Nat Metab2023;5:626-41

[120]

Kawaguchi T,Sata M.Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis.Nutr Clin Pract2013;28:580-8

[121]

Jiang Q,Welty TE.Naloxone in the management of hepatic encephalopathy.J Clin Pharm Ther2010;35:333-41

[122]

Wu G,Lo J.A bioartificial liver support system integrated with a DLM/GelMA-based bioengineered whole liver for prevention of hepatic encephalopathy via enhanced ammonia reduction.Biomater Sci2020;8:2814-24

[123]

Badal BD.Hepatic encephalopathy: diagnostic tools and management strategies.Med Clin North Am2023;107:517-31

[124]

Bloom PP,Young VB.Microbiome therapeutics for hepatic encephalopathy.J Hepatol2021;75:1452-64 PMCID:PMC10471317

[125]

Bourlioux P; the workgroup of the French Academy of Pharmacy. Faecal microbiota transplantation: key points to consider.Ann Pharm Fr2015;73:163-8

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/