Putative pseudolysogeny-dependent phage gene implicated in the superinfection resistance of Cutibacterium acnes
Stephanie Wottrich , Stacee Mendonca , Cameron Safarpour , Christine Nguyen , Laura J. Marinelli , Stephen P. Hancock , Robert L. Modlin , Jordan Moberg Parker
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) : 27
Putative pseudolysogeny-dependent phage gene implicated in the superinfection resistance of Cutibacterium acnes
Objectives:Cutibacterium acnes, formerly Propionibacterium acnes, is a bacterial species characterized by tenacious acne-contributing pathogenic strains. Therefore, bacteriophage therapy has become an attractive treatment route to circumvent issues such as evolved bacterial antibiotic resistance. However, medical and commercial use of phage therapy for C. acnes has been elusive, necessitating ongoing exploration of phage characteristics that confer bactericidal capacity.
Methods: A novel phage (Aquarius) was isolated and analyzed. Testing included genomic sequencing and annotation, electron microscopy, patch testing, reinfection assays, and qPCR to confirm pseudolysogeny and putative superinfection exclusion (SIE) protein expression.
Results: Given a superinfection-resistant phenotype was observed, reinfection assays and patch tests were performed, which confirmed the re-cultured bacteria were resistant to superinfection. Subsequent qPCR indicated pseudolysogeny was a concomitantly present phenomenon. Phage genomic analysis identified the presence of a conserved gene (gp41) with a product containing Ltp family-like protein signatures which may contribute to phage-mediated bacterial superinfection resistance (SIR) in a pseudolysogeny-dependent manner. qPCR was performed to analyze and roughly quantify gp41 activity, and mRNA expression was high during infection, implicating a role for the protein during the phage life cycle.
Conclusions: This study confirms that C. acnes bacteria are capable of harboring phage pseudolysogens and suggests that this phenomenon plays a role in bacterial SIR. This mechanism may be conferred by the expression of phage proteins while the phage persists within the host in the pseudolysogenic state. This parameter must be considered in future endeavors for efficacious application of C. acnes phage-based therapeutics.
Cutibacterium acnes / Propionibacterium acnes / pseudolysogeny / superinfection resistance / bacteriophage / antibiotic resistance / phage therapy / superinfection exclusion
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
van den Berg B, Silale A, Baslé A, Brandner AF, Mader SL, Khalid S. Structural basis for host recognition and superinfection exclusion by bacteriophage T5.Proc Natl Acad Sci U S A2022;119:e2211672119 PMCID:PMC9586334 |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
ImageJ. Image processing and analysis in Java. Available from: https://imagej.nih.gov/ij/. [Last accessed on 16 Apr 2024] |
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
Carvalho C, Ren R, Han J, Qu F. Natural selection, intracellular bottlenecks of virus populations, and viral superinfection exclusion.Annu Rev Virol2022;9:121-37 |
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
/
| 〈 |
|
〉 |