Putative pseudolysogeny-dependent phage gene implicated in the superinfection resistance of Cutibacterium acnes

Stephanie Wottrich , Stacee Mendonca , Cameron Safarpour , Christine Nguyen , Laura J. Marinelli , Stephen P. Hancock , Robert L. Modlin , Jordan Moberg Parker

Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) : 27

PDF
Microbiome Research Reports ›› 2024, Vol. 3 ›› Issue (3) :27 DOI: 10.20517/mrr.2023.42
Original Article

Putative pseudolysogeny-dependent phage gene implicated in the superinfection resistance of Cutibacterium acnes

Author information +
History +
PDF

Abstract

Objectives:Cutibacterium acnes, formerly Propionibacterium acnes, is a bacterial species characterized by tenacious acne-contributing pathogenic strains. Therefore, bacteriophage therapy has become an attractive treatment route to circumvent issues such as evolved bacterial antibiotic resistance. However, medical and commercial use of phage therapy for C. acnes has been elusive, necessitating ongoing exploration of phage characteristics that confer bactericidal capacity.

Methods: A novel phage (Aquarius) was isolated and analyzed. Testing included genomic sequencing and annotation, electron microscopy, patch testing, reinfection assays, and qPCR to confirm pseudolysogeny and putative superinfection exclusion (SIE) protein expression.

Results: Given a superinfection-resistant phenotype was observed, reinfection assays and patch tests were performed, which confirmed the re-cultured bacteria were resistant to superinfection. Subsequent qPCR indicated pseudolysogeny was a concomitantly present phenomenon. Phage genomic analysis identified the presence of a conserved gene (gp41) with a product containing Ltp family-like protein signatures which may contribute to phage-mediated bacterial superinfection resistance (SIR) in a pseudolysogeny-dependent manner. qPCR was performed to analyze and roughly quantify gp41 activity, and mRNA expression was high during infection, implicating a role for the protein during the phage life cycle.

Conclusions: This study confirms that C. acnes bacteria are capable of harboring phage pseudolysogens and suggests that this phenomenon plays a role in bacterial SIR. This mechanism may be conferred by the expression of phage proteins while the phage persists within the host in the pseudolysogenic state. This parameter must be considered in future endeavors for efficacious application of C. acnes phage-based therapeutics.

Keywords

Cutibacterium acnes / Propionibacterium acnes / pseudolysogeny / superinfection resistance / bacteriophage / antibiotic resistance / phage therapy / superinfection exclusion

Cite this article

Download citation ▾
Stephanie Wottrich, Stacee Mendonca, Cameron Safarpour, Christine Nguyen, Laura J. Marinelli, Stephen P. Hancock, Robert L. Modlin, Jordan Moberg Parker. Putative pseudolysogeny-dependent phage gene implicated in the superinfection resistance of Cutibacterium acnes. Microbiome Research Reports, 2024, 3(3): 27 DOI:10.20517/mrr.2023.42

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fitz-Gibbon S,Chiu BH.Propionibacterium acnes strain populations in the human skin microbiome associated with acne.J Invest Dermatol2013;133:2152-60 PMCID:PMC3745799

[2]

Li H.The human skin microbiome in health and skin diseases. In: Nelson K, editor. Metagenomics of the human body. New York: Springer. 2011. pp. 145-63.

[3]

Marinelli LJ,Hayes C.Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates.mBio2012;3:e00279-12 PMCID:PMC3448167

[4]

Perry A.Propionibacterium acnes: infection beyond the skin.Expert Rev Anti Infect Ther2011;9:1149-56

[5]

Leheste JR,Chrostowski JE.P. acnes-driven disease pathology: current knowledge and future directions.Front Cell Infect Microbiol2017;7:81 PMCID:PMC5348501

[6]

Brüggemann H.Bacteriophages infecting Propionibacterium acnes.Biomed Res Int2013;2013:705741 PMCID:PMC3652107

[7]

Jończyk-Matysiak E,Żaczek M.Prospects of phage application in the treatment of acne caused by Propionibacterium acnes.Front Microbiol2017;8:164 PMCID:PMC5296327

[8]

Coenye T,Nelis HJ.Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors.Res Microbiol2007;158:386-92

[9]

Holmberg A,Mörgelin M.Biofilm formation by Propionibacterium acnes is a characteristic of invasive isolates.Clin Microbiol Infect2009;15:787-95

[10]

Brüggemann H,Kilian M.The flexible gene pool of Propionibacterium acnes.Mob Genet Elements2012;2:145-8 PMCID:PMC3463471

[11]

Liu J,Zhong Q.The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin.ISME J2015;9:2078-93 PMCID:PMC4542041

[12]

Labrie SJ,Moineau S.Bacteriophage resistance mechanisms.Nature Rev Microbiol2010;8:317-27

[13]

Sun X,Heller KJ.The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis.Virology2006;350:146-57

[14]

Seed KD.Battling phages: how bacteria defend against viral attack.PLoS Pathog2015;11:e1004847 PMCID:PMC4465916

[15]

McAllister WT.Superinfection exclusion by bacteriophage T7. J Virol 1977;24:709-11. PMCID:PMC515985

[16]

Hofer B,Dreiseikelmann B.The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product.J Bacteriol1995;177:3080-6 PMCID:PMC176996

[17]

Mahony J,Fitzgerald GF.Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes.Appl Environ Microbiol2008;74:6206-15 PMCID:PMC2570291

[18]

van den Berg B, Silale A, Baslé A, Brandner AF, Mader SL, Khalid S. Structural basis for host recognition and superinfection exclusion by bacteriophage T5.Proc Natl Acad Sci U S A2022;119:e2211672119 PMCID:PMC9586334

[19]

Leavitt JC,Gilcrease EB,Teschke CM.Bacteriophage P22 SieA mediated superinfection exclusion.mBio2024;15:e02169-23

[20]

Hasan M.Evolutionary dynamics between phages and bacteria as a possible approach for designing effective phage therapies against antibiotic-resistant bacteria.Antibiotics2022;11:915 PMCID:PMC9311878

[21]

Ruiz-Cruz S,Erazo Garzon A.Lysogenization of a lactococcal host with three distinct temperate phages provides homologous and heterologous phage resistance.Microorganisms2020;8:1685 PMCID:PMC7693887

[22]

Bebeacua C,Blangy S.X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target.Mol Microbiol2013;89:152-65

[23]

Ali Y,Heßner S.Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type.Front Microbiol2014;5:98 PMCID:PMC3952083

[24]

Lood R.Characterization and genome sequencing of two Propionibacterium acnes phages displaying pseudolysogeny.BMC Genomics2011;12:198 PMCID:PMC3094311

[25]

Cieślik M,Jończyk-Matysiak E,Węgrzyn G.Temperate bacteriophages - the powerful indirect modulators of eukaryotic cells and immune functions.Viruses2021;13:1013 PMCID:PMC8228536

[26]

Shapiro C,Toma S.Comparing the impact of course-based and apprentice-based research experiences in a life science laboratory curriculum.J Microbiol Biol Educ2015;16:186-97 PMCID:PMC4690559

[27]

Webster GF.Use of bacteriophage typing to distinguish Propionibacterium acne types I and II.J Clin Microbiol1978;7:84-90 PMCID:PMC274863

[28]

Neve H,Diestel-Feddersen F,Heller KJ.Biology of the temperate Streptococcus thermophilus bacteriophage TP-J34 and physical characterization of the phage genome.Virology2003;315:184-94

[29]

Russell DA.Sequencing, assembling, and finishing complete bacteriophage genomes. In: Clokie M, Kropinski A, Lavigne R, editors. Bacteriophages: methods in molecular biology. New York: Humana Press. 2018. pp. 109-25.

[30]

Delcher AL,Powers EC.Identifying bacterial genes and endosymbiont DNA with Glimmer.Bioinformatics2007;23:673-9 PMCID:PMC2387122

[31]

Besemer J.GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses.Nucleic Acids Res2005;33:W451-4 PMCID:PMC1160247

[32]

Lawrence JG. DNA Master. 2007. Available from: http://cobamide2.bio.pitt.edu/computer.htm. [Last accessed on 16 Apr 2024]

[33]

Jordan TC,Carson S.A broadly implementable research course in phage discovery and genomics for first-year undergraduate students.mBio2014;5:e01051-13 PMCID:PMC3950523

[34]

Cresawn SG,Day N,Hendrix RW.Phamerator: a bioinformatic tool for comparative bacteriophage genomics.BMC Bioinformatics2011;12:395 PMCID:PMC3233612

[35]

Altschul SF,Miller W,Lipman DJ.Basic local alignment search tool.J Mol Biol1990;215:403-10

[36]

Söding J,Lupas AN.The HHpred interactive server for protein homology detection and structure prediction.Nucleic Acids Res2005;33:W244-8 PMCID:PMC1160169

[37]

Marchler-Bauer A,Gonzales NR.CDD: NCBI’s conserved domain database.Nucleic Acids Res2015;43:D222-6 PMCID:PMC4383992

[38]

Russell DA.PhagesDB: the actinobacteriophage database.Bioinformatics2017;33:784-6 PMCID:PMC5860397

[39]

Meier-Kolthoff JP,Klenk HP.Genome sequence-based species delimitation with confidence intervals and improved distance functions.BMC Bioinformatics2013;14:60 PMCID:PMC3665452

[40]

Meier-Kolthoff JP.VICTOR: genome-based phylogeny and classification of prokaryotic viruses.Bioinformatics2017;33:3396-404 PMCID:PMC5860169

[41]

Lefort V,Gascuel O.FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program.Mol Biol Evol2015;32:2798-800 PMCID:PMC4576710

[42]

Farris JS.Estimating phylogenetic trees from distance matrices.Am Nat1972;106:645-68Available from: http://www.jstor.org/stable/2459725. [Last accessed on 16 Apr 2024]

[43]

Letunic I.Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation.Nucleic Acids Res2021;49:W293-6 PMCID:PMC8265157

[44]

Mitchell A,Daugherty L.The InterPro protein families database: the classification resource after 15 years.Nucleic Acids Res2015;43:D213-21 PMCID:PMC4383996

[45]

Bailey TJ.Fitting a mixture model by expectation maximization to discover motifs in biopolymers.Proc Int Conf Intell Syst Mol Biol1994;2:28-36

[46]

Kumar S,Tamura K.MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Mol Biol Evol2016;33:1870-4 PMCID:PMC8210823

[47]

Källberg M,Wang S.Template-based protein structure modeling using the RaptorX web server.Nature Protoc2012;7:1511-22 PMCID:PMC4730388

[48]

Jumper J,Pritzel A.Highly accurate protein structure prediction with AlphaFold.Nature2021;596:583-9 PMCID:PMC8371605

[49]

Holm L,Törönen P.DALI shines a light on remote homologs: one hundred discoveries.Protein Sci2023;32:e4519 PMCID:PMC9793968

[50]

Jurrus E,Star K.Improvements to the APBS biomolecular solvation software suite.Protein Sci2018;27:112-28 PMCID:PMC5734301

[51]

Zhang Y.TM-align: a protein structure alignment algorithm based on the TM-score.Nucleic Acids Res2005;33:2302-9 PMCID:PMC1084323

[52]

ImageJ. Image processing and analysis in Java. Available from: https://imagej.nih.gov/ij/. [Last accessed on 16 Apr 2024]

[53]

Hewetson A,Dominguez MJ.Maturation of the functional mouse CRES amyloid from globular form.Proc Natl Acad Sci U S A2020;117:16363-72 PMCID:PMC7368291

[54]

Whelly S,Powell J,Hastert MC.Nonpathological extracellular amyloid is present during normal epididymal sperm maturation.PLoS One2012;7:e36394 PMCID:PMC3343081

[55]

Wu X,Sun L.Crystal structure of CagV, the Helicobacter pylori homologue of the T4SS protein VirB8.FEBS J2019;286:4294-309

[56]

Singer ZS,Danino T.Quantitative measurements of early alphaviral replication dynamics in single cells reveals the basis for superinfection exclusion.Cell Syst2021;12:210-9.e3 PMCID:PMC9143976

[57]

Biggs KRH,Scott L,Schwartz EJ.Ecological approach to understanding superinfection inhibition in bacteriophage.Viruses2021;13:1389 PMCID:PMC8310164

[58]

Carvalho C, Ren R, Han J, Qu F. Natural selection, intracellular bottlenecks of virus populations, and viral superinfection exclusion.Annu Rev Virol2022;9:121-37

[59]

Redman M,Watson C.What is CRISPR/Cas9?.Arch Dis Child Educ Pract Ed2016;101:213-5 PMCID:PMC4975809

[60]

Cobian N,Hidalgo-Cantabrana C.Comparative genomic analyses and CRISPR-Cas characterization of Cutibacterium acnes provide insights into genetic diversity and typing applications.Front Microbiol2021;12:758749 PMCID:PMC8595920

[61]

Kermani AA.A guide to membrane protein X-ray crystallography.FEBS J2021;288:5788-804

[62]

Marinelli LJ,Piuri M.Recombineering: a powerful tool for modification of bacteriophage genomes.Bacteriophage2012;2:5-14 PMCID:PMC3357384

[63]

Knödlseder N,Fábrega MJ.Engineering selectivity of Cutibacterium acnes phages by epigenetic imprinting.PLoS Pathog2022;18:e1010420 PMCID:PMC8989293

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/