Connect the dots: sketching out microbiome interactions through networking approaches

Marco Fabbrini , Daniel Scicchitano , Marco Candela , Silvia Turroni , Simone Rampelli

Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (4) : 25

PDF
Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (4) :25 DOI: 10.20517/mrr.2023.25
Review

Connect the dots: sketching out microbiome interactions through networking approaches

Author information +
History +
PDF

Abstract

Microbiome networking analysis has emerged as a powerful tool for studying the complex interactions among microorganisms in various ecological niches, including the human body and several environments. This analysis has been used extensively in both human and environmental studies, revealing key taxa and functional units peculiar to the ecosystem considered. In particular, it has been mainly used to investigate the effects of environmental stressors, such as pollution, climate change or therapies, on host-associated microbial communities and ecosystem function. In this review, we discuss the latest advances in microbiome networking analysis, including methods for constructing and analyzing microbiome networks, and provide a case study on how to use these tools. These analyses typically involve constructing a network that represents interactions among microbial taxa or functional units, such as genes or metabolic pathways. Such networks can be based on a variety of data sources, including 16S rRNA sequencing, metagenomic sequencing, and metabolomics data. Once constructed, these networks can be analyzed to identify key nodes or modules important for the stability and function of the microbiome. By providing insights into essential ecological features of microbial communities, microbiome networking analysis has the potential to transform our understanding of the microbial world and its impact on human health and the environment.

Keywords

Microbial networks / network interaction / network topology / ecological networks / community modeling / network approaches / shotgun metagenomics

Cite this article

Download citation ▾
Marco Fabbrini, Daniel Scicchitano, Marco Candela, Silvia Turroni, Simone Rampelli. Connect the dots: sketching out microbiome interactions through networking approaches. Microbiome Research Reports, 2023, 2(4): 25 DOI:10.20517/mrr.2023.25

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de Zelicourt A,Hirt H.Rhizosphere microbes as essential partners for plant stress tolerance.Mol Plant2013;6:242-5

[2]

Toju H,Yamamichi M.Core microbiomes for sustainable agroecosystems.Nat Plants2018;4:247-57

[3]

Naylor D,Bhattacharjee A.Soil microbiomes under climate change and implications for carbon cycling.Annu Rev Environ Resour2020;45:29-59

[4]

Layeghifard M,Guttman DS.Disentangling interactions in the microbiome: a network perspective.Trends Microbiol2017;25:217-28 PMCID:PMC7172547

[5]

Hooper LV,Macpherson AJ.Interactions between the microbiota and the immune system.Science2012;336:1268-73 PMCID:PMC4420145

[6]

Levy M,Elinav E.Metabolites: messengers between the microbiota and the immune system.Genes Dev2016;30:1589-97 PMCID:PMC4973288

[7]

Ehrlich SD, The MetaHIT Consortium. MetaHIT: the European Union Project on metagenomics of the human intestinal tract. In: Nelson K, editor. Metagenomics of the human body. New York: Springer; 2011. p. 307-16.

[8]

McDonald D,Debelius JW.American gut: an open platform for citizen science microbiome research.mSystems2018;3:e00031-18

[9]

Turnbaugh PJ,Yatsunenko T.A core gut microbiome in obese and lean twins.Nature2009;457:480-4 PMCID: PMC2677729

[10]

Perry RJ,Barry NA.Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome.Nature2016;534:213-7 PMCID:PMC4922538

[11]

Gülden E,Wen L.The gut microbiota and Type 1 diabetes.Clin Immunol2015;159:143-53 PMCID:PMC4761565

[12]

Morgan XC,Sokol H.Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment.Genome Biol2012;13:R79 PMCID:PMC3506950

[13]

Pascal V,Borruel N.A microbial signature for Crohn's disease.Gut2017;66:813-22 PMCID:PMC5531220

[14]

Yu YN.Gut microbiota and colorectal cancer.Gastrointest Tumors2015;2:26-32 PMCID:PMC4668798

[15]

Thompson LR,McDonald D.Earth microbiome project consortiumA communal catalogue reveals earth's multiscale microbial diversity.Nature2017;551:457-63 PMCID:PMC6192678

[16]

Cavicchioli R,Timmis KN.Scientists' warning to humanity: microorganisms and climate change.Nat Rev Microbiol2019;17:569-86 PMCID:PMC7136171

[17]

Leblond-Bourget N,Mangin I.16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter-and intraspecific Bifidobacterium phylogeny.Int J Syst Bacteriol1996;46:102-11

[18]

Milani C,Mangifesta M.Phylotype-level profiling of lactobacilli in highly complex environments by means of an internal transcribed spacer-based metagenomic approach.Appl Environ Microbiol2018;84:e00706-18 PMCID:PMC6029092

[19]

Dohlman AB.Mapping the microbial interactome: statistical and experimental approaches for microbiome network inference.Exp Biol Med2019;244:445-58 PMCID:PMC6547001

[20]

Rogers GB,Carroll MP.Interpreting infective microbiota: the importance of an ecological perspective.Trends Microbiol2013;21:271-6 PMCID:PMC3880558

[21]

da Silva D, Castañeda-Ojeda MP, Moretti C, Buonaurio R, Ramos C, Venturi V. Bacterial multispecies studies and microbiome analysis of a plant disease.Microbiology2014;160:556-66

[22]

Silk MJ,Delahay RJ.The application of statistical network models in disease research.Methods Ecol Evol2017;8:1026-41

[23]

Liu Y,Liu X.A statistical approach to participant selection in location-based social networks for offline event marketing.Inform Sciences2019;480:90-108

[24]

Cranmer SJ,Mcclurg SD.Navigating the range of statistical tools for inferential network analysis.Am J Polit Sci2017;61:237-51

[25]

Fujita A,Takahashi DY.A statistical method to distinguish functional brain networks.Front Neurosci2017;11:66 PMCID:PMC5307493

[26]

Dorogovtsev SN.Evolution of networks: from biological nets to the internet and WWW. Oxford University Press; 2003.

[27]

Kleaveland B,Stefano J.A network of noncoding regulatory rnas acts in the mammalian brain.Cell2018;174:350-62.e17 PMCID:PMC6559361

[28]

van der Heijden MG.Networking in the plant microbiome..PLoS Biol2016;14:e1002378 PMCID:PMC4752285

[29]

Liu Z,Mathé E,Ma Q.Network analyses in microbiome based on high-throughput multi-omics data.Brief Bioinform2021;22:1639-55 PMCID:PMC7986608

[30]

Olesen JM,Dupont YL.The modularity of pollination networks.Proc Natl Acad Sci U S A2007;104:19891-6 PMCID:PMC2148393

[31]

Stouffer DB.Compartmentalization increases food-web persistence.Proc Natl Acad Sci U S A2011;108:3648-52 PMCID:PMC3048152

[32]

de Vries FT,Bailey M.Soil bacterial networks are less stable under drought than fungal networks.Nat Commun2018;9:3033 PMCID:PMC6072794

[33]

Herren CM.Cohesion: a method for quantifying the connectivity of microbial communities.ISME J2017;11:2426-38 PMCID:PMC5649174

[34]

Hernandez DJ,Menges ES,Afkhami ME.Environmental stress destabilizes microbial networks.ISME J2021;15:1722-34 PMCID:PMC8163744

[35]

Coyte KZ,Foster KR.The ecology of the microbiome: networks, competition, and stability.Science2015;350:663-6

[36]

Agler MT,Kroll S.Microbial hub taxa link host and abiotic factors to plant microbiome variation.PLoS Biol2016;14:e1002352 PMCID:PMC4720289

[37]

Aitchison J.The statistical analysis of compositional data.J R Stat Soc B1982;44:139-60

[38]

Friedman J.Inferring correlation networks from genomic survey data.PLoS Comput Biol2012;8:e1002687 PMCID:PMC3447976

[39]

Fang H,Zhao H.CCLasso: correlation inference for compositional data through Lasso.Bioinformatics2015;31:3172-80 PMCID:PMC4693003

[40]

Fabbrini M,Leardini D.Levofloxacin prophylaxis and parenteral nutrition have a detrimental effect on intestinal microbial networks in pediatric patients undergoing HSCT.Commun Biol2023;6:36 PMCID:PMC9839701

[41]

Faust K.CoNet app: inference of biological association networks using Cytoscape.F1000Res2016;5:1519 PMCID:PMC5089131

[42]

Shannon P,Ozier O.Cytoscape: a software environment for integrated models of biomolecular interaction networks.Genome Res2003;13:2498-504 PMCID:PMC403769

[43]

Bean DM,Ficorella L,Oliver SG.Correction: esyN: network building, sharing and publishing.PLoS One2019;14:e0204058 PMCID:PMC6326497

[44]

Biswas S,Lundberg DS,Jojic V.Learning microbial interaction networks from metagenomic count data.J Comput Biol2016;23:526-35

[45]

Kurtz ZD,Miraldi ER,Blaser MJ.Sparse and compositionally robust inference of microbial ecological networks.PLoS Comput Bio2015;11:e1004226 PMCID:PMC4423992

[46]

Yoon G,Müller CL.Microbial networks in SPRING-semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome data.Front Genet2019;10:516 PMCID:PMC6563871

[47]

Meinshausen N.High-dimensional graphs and variable selection with the Lasso.Ann Statist2006;34:1436-62

[48]

Jiang S,Koh AY.HARMONIES: a hybrid approach for microbiome networks inference via exploiting sparsity.Front Genet2020;11:445 PMCID:PMC7283552

[49]

Tackmann J,von Mering C.Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data.Cell Syst2019;9:286-96.e8

[50]

McGregor K,Greenwood CMT.MDiNE: a model to estimate differential co-occurrence networks in microbiome studies.Bioinformatics2020;36:1840-7 PMCID:PMC7075537

[51]

Peschel S,von Mutius E,Depner M.NetCoMi: network construction and comparison for microbiome data in R.Brief Bioinform2020;7:195248

[52]

Wang Q,Wu W,Ho JWK.Host and microbiome multi-omics integration: applications and methodologies.Biophys Rev2019;11:55-65 PMCID:PMC6381360

[53]

Wang C,Kaalia R,Rajapakse JC.Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma.Sci Rep2022;12:15425 PMCID:PMC9475034

[54]

Singh A,Gautier B.DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays.Bioinformatics2019;35:3055-62 PMCID:PMC6735831

[55]

Rohart F,Singh A.MixOmics: an r package for 'omics feature selection and multiple data integration.PLoS Comput Biol2017;13:e1005752 PMCID:PMC5687754

[56]

Zoppi J,Neunlist M.MiBiOmics: an interactive web application for multi-omics data exploration and integration.BMC Bioinformatics2021;22:6 PMCID:PMC7789220

[57]

Goberna M.Cautionary notes on the use of co-occurrence networks in soil ecology.Soil Biol Biochem2022;166:108534

[58]

Caporaso JG,Stombaugh J.QIIME allows analysis of high-throughput community sequencing data.Nat Methods2010;7:335-6 PMCID:PMC3156573

[59]

Blanco-Míguez A,Cumbo F.Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 2023.

[60]

Wood DE,Langmead B.Improved metagenomic analysis with Kraken 2.Genome Biol2019;20:257 PMCID:PMC6883579

[61]

Milani C,Fontana F.METAnnotatorX2: a comprehensive tool for deep and shallow metagenomic data set analyses.mSystems2021;6:e0058321 PMCID:PMC8269244

[62]

Douglas GM,Zaneveld JR.PICRUSt2 for prediction of metagenome functions.Nat Biotechnol2020;38:685-8 PMCID:PMC7365738

[63]

Beghini F,Blanco-Míguez A.Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3.Elife2021;10:e65088 PMCID:PMC8096432

[64]

Liu J,Yang H.Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms.Nucleic Acids Res2013;41:e3 PMCID:PMC3592448

[65]

Huerta-Cepas J,Heller D.EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses.Nucleic Acids Res2019;47:D309-14 PMCID:PMC6324079

[66]

Uritskiy GV,Taylor J.MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis.Microbiome2018;6:158 PMCID:PMC6138922

[67]

Seemann T.Prokka: rapid prokaryotic genome annotation.Bioinformatics2014;30:2068-9

[68]

Muller J,Julien P.EggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations.Nucleic Acids Res2010;38:D190-5 PMCID:PMC2808932

[69]

Cao Q,Rajesh K.Effects of rare microbiome taxa filtering on statistical analysis.Front Microbiol2020;11:607325 PMCID:PMC7835481

[70]

Wang M.Effective data filtering is prerequisite for robust microbial association network construction.Front Microbiol2022;13:1016947 PMCID:PMC9577025

[71]

Mokhtari EB.Filtering ASVs/OTUs via mutual information-based microbiome network analysis.BMC Bioinformatics2022;23:380 PMCID:PMC9482178

[72]

Thomas AM,Asnicar F.Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation..Nat Med2019;25:667-678

[73]

Wang K,Wang Q.The negative effect of Akkermansia muciniphila-mediated post-antibiotic reconstitution of the gut microbiota on the development of colitis-associated colorectal cancer in mice.Front Microbiol2022;13:932047 PMCID:PMC9614165

[74]

Tilg H,Gerner RR.The intestinal microbiota in colorectal cancer.Cancer Cell2018;33:954-64

[75]

Berry D.Deciphering microbial interactions and detecting keystone species with co-occurrence networks.Front Microbiol2014;5:219 PMCID:PMC4033041

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/