Substrate recognition mode of a glycoside hydrolase family 42 β-galactosidase from Bifidobacterium longum subspecies infantis (BiBga42A) revealed by crystallographic and mutational analyses

Aina Gotoh , Masafumi Hidaka , Haruko Sakurama , Mamoru Nishimoto , Motomitsu Kitaoka , Mikiyasu Sakanaka , Shinya Fushinobu , Takane Katayama

Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (3) : 20

PDF
Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (3) :20 DOI: 10.20517/mrr.2023.14
Original Article

Substrate recognition mode of a glycoside hydrolase family 42 β-galactosidase from Bifidobacterium longum subspecies infantis (BiBga42A) revealed by crystallographic and mutational analyses

Author information +
History +
PDF

Abstract

Aim: Bifidobacterium longum subsp. infantis uses a glycoside hydrolase (GH) family 42 β-galactosidase (BiBga42A) for hydrolyzing lacto-N-tetraose (LNT), which is the most abundant core structure of human milk oligosaccharides (HMOs). As such, BiBga42A represents one of the pivotal enzymes underpinning the symbiosis between bifidobacteria and breastfed infants. Despite its importance, the structural basis underlying LNT hydrolysis by BiBga42A is not understood. Moreover, no substrate-complexed structures are available to date for GH42 family members.

Methods: X-ray crystallography was used to determine the structures of BiBga42A in the apo- and liganded forms. The roles of the amino acid residues that were presumed to be involved in catalysis and substrate recognition were examined by a mutational study, in which kinetic parameters of each mutant were determined using 4-nitrophenyl-β-D-galactoside, lacto-N-biose I, LNT, and lacto-N-neotetraose (LNnT) as substrates. Conservation of those amino acid residues was examined among structure-determined GH42 β-galactosidases.

Results: Crystal structures of the wild-type enzyme complexed with glycerol, the E160A/E318A double mutant complexed with galactose (Gal), and the E318S mutant complexed with LNT were determined at 1.7, 1.9, and 2.2 Å resolutions, respectively. The LNT molecule (excluding the Gal moiety at subsite +2) bound to the E318S mutant is recognized by an extensive hydrogen bond network and several hydrophobic interactions. The non-reducing end Gal moiety of LNT adopts a slightly distorted conformation and does not overlap well with the Gal molecule bound to the E160A/E318A mutant. Twelve of the sixteen amino acid residues responsible for LNT recognition and catalysis in BiBga42A are conserved among all homologs including β-1,6-1,3-galactosidase (BlGal42A) from Bifidobacterium animalis subsp. lactis.

Conclusion: BlGal42A is active on 3-β-galactobiose similarly to BiBga42A but is inactive on LNT. Interestingly, we found that the entrance of the catalytic pocket of BlGal42A is narrower than that of BiBga42A and seems not easily accessible from the solvent side due to the presence of two bulky amino acid side chains. The specificity difference may reflect the structural difference between the two enzymes.

Keywords

lacto-N-tetraose / glycoside hydrolase family 42 / β-galactosidase / bifidobacteria / human milk oligosaccharides / crystal structure

Cite this article

Download citation ▾
Aina Gotoh, Masafumi Hidaka, Haruko Sakurama, Mamoru Nishimoto, Motomitsu Kitaoka, Mikiyasu Sakanaka, Shinya Fushinobu, Takane Katayama. Substrate recognition mode of a glycoside hydrolase family 42 β-galactosidase from Bifidobacterium longum subspecies infantis (BiBga42A) revealed by crystallographic and mutational analyses. Microbiome Research Reports, 2023, 2(3): 20 DOI:10.20517/mrr.2023.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stewart CJ,O’Brien JL.Temporal development of the gut microbiome in early childhood from the TEDDY study.Nature2018;562:583-8 PMCID:PMC6415775

[2]

Sakanaka M,Gotoh A.Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis.Sci Adv2019;5:eaaw7696 PMCID:PMC6713505

[3]

Asakuma S,Urashima T.Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.J Biol Chem2011;286:34583-92 PMCID:PMC3186357

[4]

Sakanaka M,Yoshida K.Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation.Nutrients2019;12:71 PMCID:PMC7019425

[5]

Yamada C,Sakanaka M.Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum.Cell Chem Biol2017;24:515-524.e5

[6]

Ojima MN,Arzamasov AA.Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides.ISME J2022;16:2265-79 PMCID:PMC9381805

[7]

Engfer MB,Finke B,Daniel H.Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract.Am J Clin Nutr2000;71:1589-96

[8]

Urashima T,Leo F,Messer M.The predominance of type I oligosaccharides is a feature specific to human breast milk.Adv Nutr2012;3:473S-82S PMCID:PMC3649485

[9]

Katayama T.Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria.Biosci Biotechnol Biochem2016;80:621-32

[10]

Garrido D,German JB,Mills DA.Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.PLoS One2011;6:e17315 PMCID:PMC3057974

[11]

Yoshida E,Kiyohara M.Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides.Glycobiology2022;22:361-8

[12]

Viborg AH,Abou Hachem M.Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697.Glycobiology2014;24:208-16

[13]

James K,Bottacini F.Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways.Sci Rep2016;6:38560 PMCID:PMC5144078

[14]

O’ Connell Motherway M,Leahy SC.Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor.Proc Natl Acad Sci U S A2011;108:11217-22 PMCID:PMC3131351

[15]

Wada J,Kiyohara M.Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure.Appl Environ Microbiol2008;74:3996-4004 PMCID:PMC2446520

[16]

Hattie M,Debowski AW.Gaining insight into the catalysis by GH20 lacto-N-biosidase using small molecule inhibitors and structural analysis.Chem Commun2015;51:15008-11

[17]

Sakurama H,Wada J.Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression.J Biol Chem2013;288:25194-206 PMCID:PMC3757183

[18]

Gotoh A,Sugiyama Y.Novel substrate specificities of two lacto-N-biosidases towards β-linked galacto-N-biose-containing oligosaccharides of globo H, Gb5, and GA1.Carbohydr Res2015;408:18-24

[19]

Suzuki R,Katayama T.Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I.J Biol Chem2008;283:13165-73

[20]

Kitaoka M.Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides.Adv Nutr2012;3:422S-9S PMCID:PMC3649479

[21]

Sasaki Y,Ishiwata A.Mechanism of cooperative degradation of gum arabic arabinogalactan protein by Bifidobacterium longum surface enzymes.Appl Environ Microbiol2022;88:e0218721 PMCID:PMC8939339

[22]

Sasaki Y,Hashiguchi M.Assimilation of arabinogalactan side chains with novel 3-O-β-L-arabinopyranosyl-α-L-arabinofuranosidase in Bifidobacterium pseudocatenulatum.Microbiome Res Rep2023;2:12

[23]

Hidaka M,Ohtsu N.Trimeric crystal structure of the glycoside hydrolase family 42 β-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose.J Mol Biol2002;322:79-91

[24]

Godoy AS,Kadowaki MA.Crystal structure of β1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by α-galactose.FEBS J2016;283:4097-112

[25]

Viborg AH,Katayama T.A β1-6/β1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of β-galactoside catabolism within Bifidobacterium.Mol Microbiol2014;94:1024-40

[26]

Maksimainen M,Hakulinen N.Structural analysis, enzymatic characterization, and catalytic mechanisms of β-galactosidase from Bacillus circulans sp. alkalophilus.FEBS J2012;279:1788-98

[27]

Solomon HV,Feinberg H.Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase from Geobacillus stearothermophilus.Acta Crystallogr Sect F Struct Biol Cryst Commun2013;69:1114-9 PMCID:PMC3792669

[28]

Fan Y,Zhang Y.Cloning, expression and structural stability of a cold-adapted β-galactosidase from Rahnella sp. R3.Protein Expr Purif2015;115:158-64

[29]

Karan R,Muhammad R.Understanding high-salt and cold adaptation of a polyextremophilic enzyme.Microorganisms2020;8:1594 PMCID:PMC7602713

[30]

Mangiagalli M,Maione S.The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary arrangement.FEBS J2021;288:546-65

[31]

Viborg AH,Arakawa T.Discovery of α-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42.J Biol Chem2017;292:21092-101 PMCID:PMC5743082

[32]

Ojima MN,Nakajima A.Diversification of a fucosyllactose transporter within the genus Bifidobacterium.Appl Environ Microbiol2022;88:e0143721 PMCID:PMC8788664

[33]

Nishimoto M.Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk.Biosci Biotechnol Biochem2007;71:2101-4

[34]

Nihira T,Inoue K,Kitaoka M.Colorimetric quantification of alpha-D-galactose 1-phosphate.Anal Biochem2007;371:259-61

[35]

Kabsch W.XDS.Acta Crystallogr D Biol Crystallogr2010;66:125-32

[36]

Evans PR.How good are my data and what is the resolution?.Acta Crystallogr D Biol Crystallogr2013;69:1204-14 PMCID:PMC3689523

[37]

Vagin A.Molecular replacement with MOLREP.Acta Crystallogr D Biol Crystallogr2010;66:22-5

[38]

Casañal A,Emsley P.Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data.Protein Sci2020;29:1069-78 PMCID:PMC7096722

[39]

Murshudov GN,Lebedev AA.REFMAC5 for the refinement of macromolecular crystal structures.Acta Crystallogr D Biol Crystallogr2011;67:355-67 PMCID:PMC3069751

[40]

Holm L.Dali server update.Nucleic Acids Res2016;44:W351-5 PMCID:PMC4987910

[41]

Krissinel E.Inference of macromolecular assemblies from crystalline state.J Mol Biol2007;372:774-97

[42]

Henrissat B.Structural and sequence-based classification of glycoside hydrolases.Curr Opin Struct Biol1997;7:637-44

[43]

Kumar S,Li M,Tamura K.MEGA X: molecular evolutionary genetics analysis across computing platforms.Mol Biol Evol2018;35:1547-9 PMCID:PMC5967553

[44]

Larkin MA,Brown NP.Clustal W and Clustal X version 2.0.Bioinformatics2007;23:2947-8

[45]

Holm L.DALI and the persistence of protein shape.Protein Sci2020;29:128-40 PMCID:PMC6933842

[46]

Di Lauro B,Perugino G.Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: identification of the active site residues.Biochim Biophys Acta2008;1784:292-301

[47]

Shaikh FA,He S.Identification of the catalytic nucleophile in Family 42 β-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis.FEBS Lett2007;581:2441-6

[48]

Cremer D.General definition of ring puckering coordinates.J Am Chem Soc1975;97:1354-8

[49]

Wheatley RW.An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state.Biochem Cell Biol2015;93:531-40

[50]

Davies GJ,Varrot A.Mapping the conformational itinerary of β-glycosidases by X-ray crystallography.Biochem Soc Trans2003;31:523-7

[51]

Hinz SW,Beldman G,Voragen AG.β-galactosidase from Bifidobacterium adolescentis DSM20083 prefers β(1,4)-galactosides over lactose.Appl Microbiol Biotechnol2004;66:276-84

[52]

Goulas T,Tzortzis G.Comparative analysis of four β-galactosidases from Bifidobacterium bifidum NCIMB41171: purification and biochemical characterisation.Appl Microbiol Biotechnol2009;82:1079-88

[53]

Arzamasov AA,Sakanaka M.Human milk oligosaccharide utilization in intestinal bifidobacteria is governed by global transcriptional regulator NagR.mSystems2022;7:e0034322 PMCID:PMC9599254

[54]

Sonnenburg JL,Leip DD.Glycan foraging in vivo by an intestine-adapted bacterial symbiont.Science2005;307:1955-9

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/