Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium

Alberto J.M. Martin , Kineret Serebrinsky-Duek , Erick Riquelme , Pedro A. Saa , Daniel Garrido

Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (3) : 17

PDF
Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (3) :17 DOI: 10.20517/mrr.2023.10
Review

Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium

Author information +
History +
PDF

Abstract

The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.

Keywords

Bifidobacterium / colonization resistance / gut dysbiosis / microbial interactions

Cite this article

Download citation ▾
Alberto J.M. Martin, Kineret Serebrinsky-Duek, Erick Riquelme, Pedro A. Saa, Daniel Garrido. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. Microbiome Research Reports, 2023, 2(3): 17 DOI:10.20517/mrr.2023.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qin J,Raes J.MetaHIT ConsortiumA human gut microbial gene catalogue established by metagenomic sequencing.Nature2010;464:59-65

[2]

Sender R,Milo R.Are we really vastly outnumbered?.Cell2016;164:337-40

[3]

Buford TW.(Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease.Microbiome2017;5:80 PMCID:PMC5512975

[4]

Arumugam M,Pelletier E.Enterotypes of the human gut microbiome.Nature2011;473:174-80 PMCID:PMC3728647

[5]

Magne F,Gauthier L.The firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients?.Nutrients2020;12:1474 PMCID:PMC7285218

[6]

Oren A.Valid publication of the names of forty-two phyla of prokaryotes.Int J Syst Evol Microbiol2021;71

[7]

Rinninella E,Cintoni M.What is the healthy gut microbiota composition?.Microorganisms2019;7:14 PMCID:PMC6351938

[8]

Thursby E.Introduction to the human gut microbiota.Biochem J2017;474:1823-36 PMCID:PMC5433529

[9]

Enav H,Ley RE.The developing infant gut microbiome: a strain-level view.Cell Host Microbe2022;30:627-38

[10]

Forster SC,Anonye BO.A human gut bacterial genome and culture collection for improved metagenomic analyses.Nat Biotechnol2019;37:186-92 PMCID:PMC6785715

[11]

Vonaesch P,Sansonetti PJ.Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates.FEMS Microbiol Rev2018;42:273-92

[12]

Duvallet C,Gurry T,Alm EJ.Meta-analysis of gut microbiome studies identifies disease-specific and shared responses.Nat Commun2017;8:1784 PMCID:PMC5716994

[13]

Leffler DA.Clostridium difficile infection.N Engl J Med2015;372:1539-48

[14]

Clapp M,Herrera L,Wilen E.Gut microbiota’s effect on mental health: The gut-brain axis.Clin Pract2017;7:987 PMCID:PMC5641835

[15]

Usami M,Yamashita H.Gut microbiota and host metabolism in liver cirrhosis.World J Gastroenterol2015;21:11597-608 PMCID:PMC4631963

[16]

Gou W,Yue L.Gut microbiota, inflammation, and molecular signatures of host response to infection.J Genet Genomics2021;48:792-802

[17]

Kunasegaran T,Arasoo VJT,Ramadas A.The modulation of gut microbiota composition in the pathophysiology of gestational diabetes mellitus: a systematic review.Biology2021;10:1027 PMCID:PMC8533096

[18]

Sircana A,Leone N.Altered gut microbiota in type 2 diabetes: just a coincidence?.Curr Diab Rep2018;18:98

[19]

Dodd CS.Functional diversity within gut microbiomes: implications for conserving biodiversity.Conservation2021;1:311-26

[20]

Lozupone CA,Gordon JI,Knight R.Diversity, stability and resilience of the human gut microbiota.Nature2012;489:220-30 PMCID:PMC3577372

[21]

Scholtens PA,Martin R,Knol J.The early settlers: intestinal microbiology in early life.Annu Rev Food Sci Technol2012;3:425-47

[22]

Kujawska M,Roger LC.Succession of bifidobacterium longum strains in response to a changing early life nutritional environment reveals dietary substrate adaptations.iScience2020;23:101368 PMCID:PMC7390879

[23]

Escalas A,Voordeckers JW.Microbial functional diversity: from concepts to applications.Ecol Evol2019;9:12000-16 PMCID:PMC6822047

[24]

Coyte KZ.Understanding competition and cooperation within the mammalian gut microbiome.Curr Biol2019;29:R538-44 PMCID:PMC6935513

[25]

Saa P,Silva-Andrade C,Garrido D.Modeling approaches for probing cross-feeding interactions in the human gut microbiome.Comput Struct Biotechnol J2022;20:79-89 PMCID:PMC8685919

[26]

Goyal A,Dubinkina V.Ecology-guided prediction of cross-feeding interactions in the human gut microbiome.Nat Commun2021;12:1335 PMCID:PMC7910475

[27]

Donaldson GP,Mazmanian SK.Gut biogeography of the bacterial microbiota.Nat Rev Microbiol2016;14:20-32 PMCID:PMC4837114

[28]

Abu-Ali GS,Lloyd-Price J.Metatranscriptome of human faecal microbial communities in a cohort of adult men.Nat Microbiol2018;3:356-66 PMCID:PMC6557121

[29]

Faust K.Microbial interactions: from networks to models.Nat Rev Microbiol2012;10:538-50

[30]

David LA,Carmody RN.Diet rapidly and reproducibly alters the human gut microbiome.Nature2014;505:559-63 PMCID:PMC3957428

[31]

Flint HJ,Duncan SH,Forano E.Microbial degradation of complex carbohydrates in the gut.Gut Microbes2012;3:289-306 PMCID:PMC3463488

[32]

La Rosa SL,Vera-Ponce de León A.Glycan processing in gut microbiomes.Curr Opin Microbiol2022;67:102143

[33]

González-Morelo K J,Garrido D.Molecular insights into O-linked glycan utilization by gut microbes.Front Microbiol2020;11:591568 PMCID:PMC7674204

[34]

Belzer C,Aalvink S.Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B(12) production by intestinal symbionts.mBio2017;8 PMCID:PMC5605934

[35]

Koh A,Kovatcheva-Datchary P.From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites.Cell2016;165:1332-45

[36]

Makki K,Walter J.The impact of dietary fiber on gut microbiota in host health and disease.Cell Host Microbe2018;23:705-15

[37]

Hirmas B,Orellana G.Metabolic modeling and bidirectional culturing of two gut microbes reveal cross-feeding interactions and protective effects on intestinal cells.mSystems2022;7:e0064622 PMCID:PMC9600892

[38]

Bourriaud C,Martin L.Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident.J Appl Microbiol2005;99:201-12

[39]

Tsukuda N,Hara T.Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life.ISME J2021;15:2574-90 PMCID:PMC8397723

[40]

Pokusaeva K,van Sinderen D.Carbohydrate metabolism in Bifidobacteria.Genes Nutr2011;6:285-306 PMCID:PMC3145055

[41]

Rivière A,Lantin D,De Vuyst L.Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut.Front Microbiol2016;7:979 PMCID:PMC4923077

[42]

Belenguer A,Calder AG.Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut.Appl Environ Microbiol2006;72:3593-9 PMCID:PMC1472403

[43]

Falony G,Verbrugghe K.Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose.Appl Environ Microbiol2006;72:7835-41 PMCID:PMC1694233

[44]

Chia LW,Blijenberg B.Cross-feeding between Bifidobacterium infantis and Anaerostipes caccae on lactose and human milk oligosaccharides.Benef Microbes2021;12:69-83

[45]

Bunesova V,Schwab C.Mucin cross-feeding of infant Bifidobacteria and Eubacterium hallii.Microb Ecol2018;75:228-38

[46]

Laursen MF,von Burg N.Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut.Nat Microbiol2021;6:1367-82 PMCID:PMC8556157

[47]

Parada Venegas D,Landskron G.Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases.Front Immunol2019;10:277

[48]

Corrêa-Oliveira R,Vieira A,Vinolo MA.Regulation of immune cell function by short-chain fatty acids.Clin Transl Immunol2016;5:e73 PMCID:PMC4855267

[49]

Litvak Y,Bäumler AJ.Colonocyte metabolism shapes the gut microbiota.Science2018;362:eaat9076 PMCID:PMC6296223

[50]

Donohoe DR,Zhang X.The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.Cell Metab2011;13:517-26 PMCID:PMC3099420

[51]

Sun M,Liu Z.Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases.J Gastroenterol2017;52:1-8 PMCID:PMC5215992

[52]

Gasaly N,Hermoso MA.Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation.Front Immunol2021;12:658354 PMCID:PMC8187770

[53]

Vital M,Tiedje JM.Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data.MBio2014;5:e00889-14 PMCID:PMC3994512

[54]

Clark RL,Stevenson DM.Design of synthetic human gut microbiome assembly and butyrate production.Nat Commun2021;12:3254 PMCID:PMC8166853

[55]

Zmora N,Elinav E.You are what you eat: diet, health and the gut microbiota.Nat Rev Gastroenterol Hepatol2019;16:35-56

[56]

Boulangé CL,Chilloux J,Dumas ME.Impact of the gut microbiota on inflammation, obesity, and metabolic disease.Genome Med2016;8:42 PMCID:PMC4839080

[57]

Vital M,Wang Q.A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community.Microbiome2013;1:8 PMCID:PMC4126176

[58]

Louis P.Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.FEMS Microbiol Lett2009;294:1-8

[59]

O Sheridan P,Lawley TD.Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes.Microb Genom2016;2:e000043 PMCID:PMC5320581

[60]

Qian Y,Venturelli OS.Towards a deeper understanding of microbial communities: integrating experimental data with dynamic models.Curr Opin Microbiol2021;62:84-92 PMCID:PMC8286325

[61]

Petersen C.Defining dysbiosis and its influence on host immunity and disease.Cell Microbiol2014;16:1024-33 PMCID:PMC4143175

[62]

Liu H,He T.Butyrate: a double-edged sword for health?.Adv Nutr2018;9:21-9 PMCID:PMC6333934

[63]

Coutzac C,Paci A.Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer.Nat Commun2020;11:2168 PMCID:PMC7195489

[64]

Lupton JR.Microbial degradation products influence colon cancer risk: the butyrate controversy.J Nutr2004;134:479-82

[65]

Honda K.The microbiota in adaptive immune homeostasis and disease.Nature2016;535:75-84

[66]

Dominguez-Bello MG,Knight R.Role of the microbiome in human development.Gut2019;68:1108-14 PMCID:PMC6580755

[67]

Takiishi T,Câmara NOS.Intestinal barrier and gut microbiota: shaping our immune responses throughout life.Tissue Barriers2017;5:e1373208 PMCID:PMC5788425

[68]

Carding S,Vipond DT,Owen LJ.Dysbiosis of the gut microbiota in disease.Microb Ecol Health Dis2015;26:26191 PMCID:PMC4315779

[69]

Nishida A,Inatomi O,Naito Y.Gut microbiota in the pathogenesis of inflammatory bowel disease.Clin J Gastroenterol2018;11:1-10

[70]

Kriss M,Nusbacher NM,Lozupone CA.Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery.Curr Opin Microbiol2018;44:34-40 PMCID:PMC6435260

[71]

Ternes D,Tsenkova M,Haan S.Microbiome in colorectal cancer: how to get from meta-omics to mechanism?.Trends Microbiol2020;28:401-23

[72]

Khan I,Zha L.Mechanism of the gut microbiota colonization resistance and enteric pathogen infection.Front Cell Infect Microbiol2021;11:1273 PMCID:PMC8733563

[73]

Diether NE.Microbial fermentation of dietary protein: an important factor in diet-microbe-host interaction.Microorganisms2019;7:19 PMCID:PMC6352118

[74]

Isles NS,Kwong JC,Stinear TP.Gut microbiome signatures and host colonization with multidrug-resistant bacteria.Trends Microbiol2022;30:853-65

[75]

Mosca A,Hugot JP.Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?.Front Microbiol2016;7:455 PMCID:PMC4815357

[76]

Sze MA.Looking for a signal in the noise: revisiting obesity and the microbiome.MBio2016;7:e01018-16 PMCID:PMC4999546

[77]

Vindigni SM,Suskind DL.The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions.Therap Adv Gastroenterol2016;9:606-25 PMCID:PMC4913337

[78]

Shealy NG,Byndloss MX.Colonization resistance: metabolic warfare as a strategy against pathogenic Enterobacteriaceae.Curr Opin Microbiol2021;64:82-90 PMCID:PMC8612973

[79]

Duranti S,Mancabelli L.Elucidating the gut microbiome of ulcerative colitis: bifidobacteria as novel microbial biomarkers.FEMS Microbiol Ecol2016;92:fiw191

[80]

Li M,Stanton C.Bifidobacterium longum subsp. infantis FJSYZ1M3 ameliorates DSS-induced colitis by maintaining the intestinal barrier, regulating inflammatory cytokines, and modifying gut microbiota.Food Funct2023;14:354-68

[81]

Vazquez-Gutierrez P,Werder J,Lacroix C.High iron-sequestrating bifidobacteria inhibit enteropathogen growth and adhesion to intestinal epithelial cells in vitro.Front Microbiol2016;7:1480 PMCID:PMC5031772

[82]

Vito R, Conte C, Traina G. A multi-strain probiotic formulation improves intestinal barrier function by the modulation of tight and adherent junction proteins.Cells2022;11:2617 PMCID:PMC9406415

[83]

Duranti S,Zini I.Bifidobacterium bifidum PRL2010 alleviates intestinal ischemia/reperfusion injury.PLoS One2018;13:e0202670 PMCID:PMC6116995

[84]

Koninkx JF,Malago JJ.Probiotic bacteria induced improvement of the mucosal integrity of enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis 857.J Funct Foods2010;2:225-34

[85]

Kim JY,Kim JY.The probiotic strain bifidobacterium animalis ssp. lactis HY8002 potentially improves the mucosal integrity of an altered intestinal microbial environment.Front Microbiol2022;13:1573 PMCID:PMC9102380

[86]

Engevik MA,Chang-Graham AL.Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways.MBio2019;10:e01087-19 PMCID:PMC6581858

[87]

Wang X,Ran Y.Probiotic Bifidobacterium bifidum G9-1 has a preventive effect on the acceleration of colonic permeability and M1 macrophage population in maternally separated rats.Biomedicines2021;9:641 PMCID:PMC8229252

[88]

Kurose Y,Sen A.Bioactive factors secreted by Bifidobacterium breve B-3 enhance barrier function in human intestinal Caco-2 cells.Benef Microbes2019;10:89-100

[89]

López P,Sánchez B.Interaction of Bifidobacterium bifidum LMG13195 with HT29 cells influences regulatory-T-cell-associated chemokine receptor expression.Appl Environ Microbiol2012;78:2850-7 PMCID:PMC3318848

[90]

Pacheco AR.A multidimensional perspective on microbial interactions.FEMS Microbiol Lett2019;366 PMCID:PMC6610204

[91]

Klymiuk I,Castellani C,Obermüller B.Characterization of the luminal and mucosa-associated microbiome along the gastrointestinal tract: results from surgically treated preterm infants and a murine model.Nutrients2021;13:1030 PMCID:PMC8004827

[92]

Pacheco AR,Segrè D.Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems.Nat Commun2019;10:103 PMCID:PMC6327061

[93]

Sung J,Cabatbat JJT.Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis.Nat Commun2017;8:15393 PMCID:PMC5467172

[94]

Magnúsdóttir S,Kutt L.Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota.Nat Biotechnol2017;35:81-9

[95]

Wang T,Dubinkina V.Evidence for a multi-level trophic organization of the human gut microbiome.PLoS Comput Biol2019;15:e1007524 PMCID:PMC6922320

[96]

D'Souza G,Preussger D,Waschina S.Ecology and evolution of metabolic cross-feeding interactions in bacteria.Nat Prod Rep2018;35:455-88

[97]

Gutiérrez N.Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes.mSystems2019;4 PMCID:PMC6635622

[98]

Egan M,Kilcoyne M.Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium.BMC Microbiol2014;14:282 PMCID:PMC4252021

[99]

Turroni F,Milani C.Glycan cross-feeding activities between bifidobacteria under in vitro conditions.Front Microbiol2015;6:1030 PMCID:PMC4585166

[100]

Kim H,Kang S,Ji GE.Co-culture with Bifidobacterium catenulatum improves the growth, gut colonization, and butyrate production of faecalibacterium prausnitzii: in vitro and in vivo studies.Microorganisms2020;8:788 PMCID:PMC7285360

[101]

Holscher HD.Dietary fiber and prebiotics and the gastrointestinal microbiota.Gut Microbes2017;8:172-84 PMCID:PMC5390821

[102]

Louis P.Formation of propionate and butyrate by the human colonic microbiota.Environ Microbiol2017;19:29-41

[103]

Stevens EJ,King KC.Host microbiota can facilitate pathogen infection.PLoS Pathog2021;17:e1009514 PMCID:PMC8118302

[104]

Neumann M,Grant ET.Deprivation of dietary fiber in specific-pathogen-free mice promotes susceptibility to the intestinal mucosal pathogen Citrobacter rodentium.Gut Microbes2021;13:1966263 PMCID:PMC8451455

[105]

Ghoul M.The ecology and evolution of microbial competition.Trends Microbiol2016;24:833-45

[106]

Eberl C,Jochum LM.E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source.Cell Host Microbe2021;29:1680-1692.e7

[107]

Litvak Y,Nguyen H.Commensal enterobacteriaceae protect against salmonella colonization through oxygen competition.Cell Host Microbe2019;25:128-139.e5

[108]

Rogers AWL,Bäumler AJ.Salmonella versus the Microbiome.Microbiol Mol Biol Rev2021;85 PMCID:PMC8549850

[109]

Stoffels L,Berks BC.Thiosulfate reduction in Salmonella enterica is driven by the proton motive force.J Bacteriol2012;194:475-85 PMCID:PMC3256639

[110]

Winter SE,Winter MG.Gut inflammation provides a respiratory electron acceptor for Salmonella.Nature2010;467:426-9 PMCID:PMC2946174

[111]

Rivera-Chávez F,Faber F.Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella.Cell Host Microbe2016;19:443-54 PMCID:PMC4832419

[112]

Le Guern R,Gosset P.Colonization resistance against multi-drug-resistant bacteria: a narrative review.J Hosp Infect2021;118:48-58

[113]

Garcia-Gutierrez E,Cotter PD.Gut microbiota as a source of novel antimicrobials.Gut Microbes2019;10:1-21 PMCID:PMC6363078

[114]

Hromada S,Jacobson TB.Negative interactions determine Clostridioides difficile growth in synthetic human gut communities.Mol Syst Biol2021;17:e10355 PMCID:PMC8543057

[115]

Smith DR,Opatowski L.Microbiome-pathogen interactions drive epidemiological dynamics of antibiotic resistance: a modeling study applied to nosocomial pathogen control.Elife2021;10 PMCID:PMC8560094

[116]

Martinez FA,Converti A,de Souza Oliveira RP.Bacteriocin production by Bifidobacterium spp. A review.Biotechnol Adv2013;31:482-8

[117]

Liu G,Zhao L,Wang C.Antibacterial activity and mechanism of bifidocin A against Listeria monocytogenes.Food Control2017;73:854-61

[118]

Mahdi LH,Yaseen KH,Essa RH.Establishing novel roles of bifidocin LHA, antibacterial, antibiofilm and immunomodulator against Pseudomonas aeruginosa corneal infection model.Int J Biol Macromol2021;186:433-44

[119]

Fukuda S,Hase K.Bifidobacteria can protect from enteropathogenic infection through production of acetate.Nature2011;469:543-7

[120]

Walker AW,McWilliam Leitch EC,Flint HJ.pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon.Appl Environ Microbiol2005;71:3692-700 PMCID:PMC1169066

[121]

Park SY,Coyte KZ.Strain-level fitness in the gut microbiome is an emergent property of glycans and a single metabolite.Cell2022;185:513-529.e21 PMCID:PMC8896310

[122]

Shelton CD,Shealy NG.Salmonella enterica serovar Typhimurium uses anaerobic respiration to overcome propionate-mediated colonization resistance.Cell Rep2022;38:110180 PMCID:PMC8800556

[123]

Jacobson A,Rajendram M.A gut commensal-produced metabolite mediates colonization resistance to salmonella infection.Cell Host Microbe2018;24:296-307.e7 PMCID:PMC6223613

[124]

Becattini S,Carter RA.Commensal microbes provide first line defense against Listeria monocytogenes infection.J Exp Med2017;214:1973-89 PMCID:PMC5502438

[125]

Caballero S,Carter RA.Cooperating commensals restore colonization resistance to vancomycin-resistant enterococcus faecium.Cell Host Microbe2017;21:592-602.e4 PMCID:PMC5494988

[126]

Kim SG,Moody TU.Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus.Nature2019;572:665-9

[127]

Aires J.First 1000 days of life: consequences of antibiotics on gut microbiota.Front Microbiol2021;12:681427 PMCID:PMC8170024

[128]

Ramirez J,Bustos Fernandez L.Antibiotics as major disruptors of gut microbiota.Front Cell Infect Microbiol2020;10:572912 PMCID:PMC7732679

[129]

Bokulich NA,Battaglia T.Antibiotics, birth mode, and diet shape microbiome maturation during early life.Sci Transl Med2016;8:343ra82 PMCID:PMC5308924

[130]

Martín R.Emerging health concepts in the probiotics field: streamlining the definitions.Front Microbiol2019;10:1047 PMCID:PMC6536656

[131]

Hill C,Reid G.Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat Rev Gastroenterol Hepatol2014;11:506-14

[132]

Sanders ME,Merrifield CA.Probiotics for human use.Nutr Bull2018;43:212-25

[133]

Han S,Xie J.Probiotic gastrointestinal transit and colonization after oral administration: a long journey.Front Cell Infect Microbiol2021;11:609722 PMCID:PMC8006270

[134]

Zmora N,Suez J.Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features.Cell2018;174:1388-1405.e21

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/