Assimilation of arabinogalactan side chains with novel 3-O-β-L-arabinopyranosyl-α-L-arabinofuranosidase in Bifidobacterium pseudocatenulatum

Yuki Sasaki , Makoto Yanagita , Mimika Hashiguchi , Ayako Horigome , Jin-Zhong Xiao , Toshitaka Odamaki , Kanefumi Kitahara , Kiyotaka Fujita

Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (2) : 12

PDF
Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (2) :12 DOI: 10.20517/mrr.2023.08
Original Article

Assimilation of arabinogalactan side chains with novel 3-O-β-L-arabinopyranosyl-α-L-arabinofuranosidase in Bifidobacterium pseudocatenulatum

Author information +
History +
PDF

Abstract

Aim: Dietary plant fibers affect gut microbiota composition; however, the underlying microbial degradation pathways are not fully understood. We previously discovered 3-O-α-D-galactosyl-α-L-arabinofuranosidase (GAfase), a glycoside hydrolase family 39 enzyme involved in the assimilation of side chains of arabinogalactan protein (AGP), from Bifidobacterium longum subsp. longum (B. longum) JCM7052. Although GAfase homologs are not highly prevalent in the Bifidobacterium genus, several Bifidobacterium strains possess the homologs. To explore the differences in substrate specificity among the homologs, a homolog of B. longum GAfase in Bifidobacterium pseudocatenulatum MCC10289 (MCC10289_0425) was characterized.

Methods: Gum arabic, larch, wheat AGP, and sugar beet arabinan were used to determine the substrate specificity of the MCC10289_0425 protein. An amino acid replacement was introduced into GAfase to identify a critical residue that governs the differentiation of substrate specificity. The growth of several Bifidobacterium strains on β-L-arabinopyranosyl disaccharide and larch AGP was examined.

Results: MCC10289_0425 was identified to be an unprecedented 3-O-β-L-arabinopyranosyl-α-L-arabinofuranosidase (AAfase) with low GAfase activity. A single amino acid replacement (Asn119 to Tyr) at the catalytic site converted GAfase into AAfase. AAfase releases sugar source from AGP, thereby allowing B. pseudocatenulatum growth.

Conclusion: Bifidobacteria have evolved several homologous enzymes with overlapping but distinct substrate specificities depending on the species. They have acquired different fitness abilities to respond to diverse plant polysaccharide structures.

Keywords

Bifidobacterium pseudocatenulatum / arabinogalactan protein / type II arabinogalactan / glycoside hydrolase

Cite this article

Download citation ▾
Yuki Sasaki, Makoto Yanagita, Mimika Hashiguchi, Ayako Horigome, Jin-Zhong Xiao, Toshitaka Odamaki, Kanefumi Kitahara, Kiyotaka Fujita. Assimilation of arabinogalactan side chains with novel 3-O-β-L-arabinopyranosyl-α-L-arabinofuranosidase in Bifidobacterium pseudocatenulatum. Microbiome Research Reports, 2023, 2(2): 12 DOI:10.20517/mrr.2023.08

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rogowski A,Mortimer JC.Glycan complexity dictates microbial resource allocation in the large intestine.Nat Commun2015;6:7481 PMCID:PMC4491172

[2]

Jung DH,Kim YJ,Nam YD.The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut.Int J Biol Macromol2020;161:389-97

[3]

Komeno M,Fujita K.Two novel α-L-arabinofuranosidases from Bifidobacterium longum subsp. longum belonging to glycoside hydrolase family 43 cooperatively degrade arabinan.Appl Environ Microbiol2019;85 PMCID:PMC6414367

[4]

Kulcinskaja E,Ibrahim R,Stålbrand H.Expression and characterization of a Bifidobacterium adolescentis beta-mannanase carrying mannan-binding and cell association motifs.Appl Environ Microbiol2013;79:133-40 PMCID:PMC3536085

[5]

Fujita K,Ono Y.Molecular cloning and characterization of a beta-L-arabinobiosidase in Bifidobacterium longum that belongs to a novel glycoside hydrolase family.J Biol Chem2011;286:5143-50 PMCID:PMC3037626

[6]

Fujita K,Obuchi E,Suganuma T.Characterization of a novel β-L-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 family member.J Biol Chem2014;289:5240-9 PMCID:PMC3931080

[7]

Fujita K,Kaneko S,Tsumuraya Y.Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum.Appl Microbiol Biotechnol2019;103:1299-310

[8]

Sasaki Y,Odamaki T.Novel 3-O-α-D-galactosyl-α-L-arabinofuranosidase for the assimilation of gum arabic arabinogalactan protein in Bifidobacterium longum subsp. longum.Appl Environ Microbiol2021;87 PMCID:PMC8117759

[9]

Sasaki Y,Ishiwata A.Mechanism of cooperative degradation of gum arabic arabinogalactan protein by Bifidobacterium longum surface enzymes.Appl Environ Microbiol2022;88:e0218721 PMCID:PMC8939339

[10]

Watanabe Y,Hara T.Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract.ISME COMMUN2021;1

[11]

Street CA.Refinement of structures previously proposed for gum arabic and other acacia gum exudates.Talanta1983;30:887-93

[12]

Goodrum LJ,Leykam JF.Gum arabic glycoprotein contains glycomodules of both extensin and arabinogalactan-glycoproteins.Phytochemistry2000;54:99-106

[13]

Goellner EM,Kramer R.Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans.Carbohyd Polym2011;86:1739-44

[14]

Fincher G.A water-soluble arabinogalactan-peptide from wheat endosperm.Aust Jnl Of Bio Sci1974;27:117

[15]

Tischer C.The free reducing oligosaccharides of gum arabic: aids for structural assignments in the polysaccharide.Carbohydrate Polymers47:151-8

[16]

Odamaki T,Mitsuyama E.Impact of a bathing tradition on shared gut microbe among Japanese families.Sci Rep2019;9:4380

[17]

Holmes EW.Separation of glycoprotein-derived oligosaccharides by thin-layer chromatography.Anal Biochem1979;93:167-70

[18]

Utsumi Y,Francisco .PB, Sawada T, Kitamura S, Nakamura Y. Quantitative assay method for starch branching enzyme with bicinchoninic acid by measuring the reducing terminals of glucans.J Appl Glycosci2009;56:215-22

[19]

Jumper J,Pritzel A.Highly accurate protein structure prediction with AlphaFold.Nature2021;596:583-9

[20]

Mirdita M,Moriwaki Y,Ovchinnikov S.ColabFold: making protein folding accessible to all.Nat Methods2022;19:679-82 PMCID:PMC9184281

[21]

Sasaki Y,Kitahara K.Characterization of a GH36 α-D-galactosidase associated with assimilation of gum arabic in Bifidobacterium longum subsp. longum JCM7052.J Appl Glycosci2021;68:47-52 PMCID:PMC8367640

[22]

Sasaki Y,Kitahara K.Characterization of a GH36 β-L-arabinopyranosidase in Bifidobacterium adolescentis.J Appl Glycosci2018;65:23-30 PMCID:PMC8056906

[23]

Golubev AM,Brandão Neto JR.Crystal structure of α-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism.J Mol Biol2004;339:413-22

[24]

Jones DR,Gruninger RJ.Discovery and characterization of family 39 glycoside hydrolases from rumen anaerobic fungi with polyspecific activity on rare arabinosyl substrates.J Biol Chem2017;292:12606-20 PMCID:PMC5535035

[25]

Ichinose H,Honda M.A β-L-arabinopyranosidase from streptomyces avermitilis is a novel member of glycoside hydrolase family 27.J Biol Chem2009;284:25097-106 PMCID:PMC2757213

[26]

Tryfona T,Kotake T.Carbohydrate structural analysis of wheat flour arabinogalactan protein.Carbohydr Res2010;345:2648-56

[27]

Love J.632. The polysaccharides of the green seaweed codium fragile. part II. The water-soluble sulphated polysaccharides.J Chem Soc1964;

[28]

Capek P,Kardošová A.Polysaccharides from the roots of the marsh mallow (Althaea officinalis L.): structure of an arabinan.Carbohyd Res1983;117:133-40

[29]

Swamy N.Arabinans from Cajanus cajan cotyledon.Phytochemistry1991;30:263-5

[30]

Ojima MN,Nakajima A.Diversification of a fucosyllactose transporter within the genus Bifidobacterium.Appl Environ Microbiol2022;88:e0143721

[31]

Fujita K,Sakamoto A,Kitahara K.Bifidobacterium longum subsp. longum exo-β-1,3-galactanase, an enzyme for the degradation of type II arabinogalactan.Appl Environ Microbiol2014;80:4577-84

[32]

Nie S,Cui SW,Xie M.The core carbohydrate structure of Acacia seyal var. seyal (Gum arabic).Food Hydrocolloids2013;32:221-7

AI Summary AI Mindmap
PDF

69

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/