Production of a selective antibacterial fatty acid against Staphylococcus aureus by Bifidobacterium strains

Hiroshi Kikukawa , Toshihiro Nagao , Mitsuki Ota , Shigeo Takashima , Kohji Kitaguchi , Emiko Yanase , Sadatoshi Maeda , Kiyotaka Y. Hara

Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (1) : 4

PDF
Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (1) :4 DOI: 10.20517/mrr.2022.24
Original Article

Production of a selective antibacterial fatty acid against Staphylococcus aureus by Bifidobacterium strains

Author information +
History +
PDF

Abstract

Aims: C16 monounsaturated fatty acid (C16:1) show antibacterial activity against Staphylococcus aureus, a pathogen associated with various diseases such as atopic dermatitis and bacteremia, while the compound does not exhibit antibacterial activity against Staphylococcus epidermidis, an epidermal commensal that inhibits the growth of S. aureus. In this study, we aimed to find bifidobacterial strains with the ability to produce C16:1 and to find a practical manner to utilize C16:1-producing strains in industry.

Methods: Various Bifidobacterium strains were screened for their content of C16:1. The chemical identity of C16:1 produced by a selected strain was analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Medium components that affect the C16:1 content of the selected strain were investigated. Antibacterial activity against staphylococci was compared between the authentic C16:1 isomers and total fatty acids (TFA) extracted from the selected strain.

Results: B. adolescentis 12451, B. adolescentis 12-111, B. boum JCM 1211, and Bifidobacterium sp. JCM 7042 showed high C16:1 content among the tested strains. TFA extracted from Bifidobacterium sp. JCM 7042 contained C16:1 at 2.3% as the fatty acid constituent (2.4 mg/L of broth). Through GC-MS and LC-MS analyses, the C16:1 synthesized by Bifidobacterium sp. JCM 7042 was identified as 7-cis-hexadecenoic acid (7-cis-C16:1). The authentic 7-cis-C16:1 showed strong and selective antibacterial activity against S. aureus, similar to 6-cis-C16:1, with a minimum inhibitory concentration (MIC) of < 10 µg/mL. Components that increase C16:1 productivity were not found in the MRS and TOS media; however, Tween 80 was shown to considerably reduce the C16:1 ratio in TFA. Antibacterial activity against S. aureus was observed when the TFA extracted from Bifidobacterium sp. JCM 7042 contained high level of 7-cis-C16:1 (6.1% in TFA) but not when it contained low level of 7-cis-C16:1 (0.1% in TFA).

Conclusion: The fatty acid, 7-cis-C16:1, which can selectively inhibit the S. aureus growth, is accumulated in TFA of several bifidobacteria. The TFA extracted from cultured cells of Bifidobacterium sp. JCM 7042 demonstrated antibacterial activity. From a practical viewpoint, our findings are important for developing an efficient method to produce novel skin care cosmetics, functional dairy foods, and other commodities.

Keywords

Bifidobacterium / screening / hexadecenoic acid / selective antibacterial activity / Staphylococcus aureus / Staphylococcus epidermidis

Cite this article

Download citation ▾
Hiroshi Kikukawa, Toshihiro Nagao, Mitsuki Ota, Shigeo Takashima, Kohji Kitaguchi, Emiko Yanase, Sadatoshi Maeda, Kiyotaka Y. Hara. Production of a selective antibacterial fatty acid against Staphylococcus aureus by Bifidobacterium strains. Microbiome Research Reports, 2023, 2(1): 4 DOI:10.20517/mrr.2022.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Turroni F,Ventura M.Genomics and ecological overview of the genus Bifidobacterium.Int J Food Microbiol2011;149:37-44.

[2]

Fushinobu S.Unique sugar metabolic pathways of bifidobacteria.Biosci Biotechnol Biochem2010;74:2374-84.

[3]

Sharma M,Sharma RK.Recent developments in probiotics: an emphasis on Bifidobacterium.Food Biosci2021;41:100993.

[4]

Kelly SM,van Sinderen D.Plant glycan metabolism by Bifidobacteria.Front Microbiol2021;12:609418. PMCID:PMC7889515

[5]

Sakanaka M,Yoshida K.Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation.Nutrients2019;12:71. PMCID:PMC7019425

[6]

Sakanaka M,Gotoh A.Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis.Sci Adv2019;5:eaaw7696. PMCID:PMC6713505

[7]

Martinez FA,Converti A,de Souza Oliveira RP.Bacteriocin production by Bifidobacterium spp. a review.Biotechnol Adv2013;31:482-8.

[8]

Zavaglia A, Kociubinski G, Pérez P, Disalvo E, De Antoni G. Effect of bile on the lipid composition and surface properties of bifidobacteria.J Appl Microbiol2002;93:794-9.

[9]

Mawatari S,Morisaki T.Identification of plasmalogens in Bifidobacterium longum, but not in Bifidobacterium animalis.Sci Rep2020;10:427.

[10]

Fontes AL,Rodríguez-Alcalá LM.Effect of pufa substrates on fatty acid profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA production in commercial semi-skimmed milk.Sci Rep2018;8:15591. PMCID:PMC6197199

[11]

Liu S,Jiang J.Acid response of Bifidobacterium longum subsp. longum BBMN68 is accompanied by modification of the cell membrane fatty acid composition.J Microbiol Biotechnol2016;26:1190-7.

[12]

O'Connell KJ,Hennessey AA.Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve.Bioengineered2013;4:313-21. PMCID:PMC3813531

[13]

Veerkamp JH.Fatty acid composition of Bifidobacterium and Lactobacillus strains.J Bacteriol1971;108:861-7. PMCID:PMC247153

[14]

Argudín M,Rodicio MR.Food poisoning and Staphylococcus aureus enterotoxins.Toxins2010;2:1751-73. PMCID:PMC3153270

[15]

Geoghegan JA,Foster TJ.Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship.Trends Microbiol2018;26:484-97.

[16]

McClelland RS,Jr ., Sanders LL, et al. Staphylococcus aureus bacteremia among elderly vs younger adult patients: comparison of clinical features and mortality.Arch Intern Med1999;159:1244-7.

[17]

Miyano T,Tanaka RJ.Model-based meta-analysis to optimize Staphylococcus aureus-targeted therapies for atopic dermatitis.JID Innov2022;2:100110. PMCID:PMC9214323

[18]

Kobayashi T,Horiuchi K.Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis.Immunity2015;42:756-66. PMCID:PMC4407815

[19]

Kong HH,Deming C.Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis.Genome Res2012;22:850-9. PMCID:PMC3337431

[20]

Iwamoto K,Miyake R.Staphylococcus aureus in atopic dermatitis: strain-specific cell wall proteins and skin immunity.Allergol Int2019;68:309-15.

[21]

Cogen AL,Sanchez KM.Selective antimicrobial action is provided by phenol-soluble modulins derived from staphylococcus epidermidis, a normal resident of the skin.J Invest Dermatol2010;130:192-200. PMCID:PMC2796468

[22]

Iwase T,Shinji H.staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization.Nature2010;465:346-9.

[23]

Lai Y,Radek KA.Activation of TLR2 by a small molecule produced by staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections.J Invest Dermatol2010;130:2211-21. PMCID:PMC2922455

[24]

Lai Y,Nakatsuji T.Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury.Nat Med2009;15:1377-82. PMCID:PMC2880863

[25]

Peng G,Ikutama R.Human β-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway.J Clin Invest2022;132. PMCID:PMC9435650

[26]

Jang IT,Kim HJ.Novel cytoplasmic bacteriocin compounds derived from staphylococcus epidermidis selectively kill Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA).Pathogens2020;9:87. PMCID:PMC7168682

[27]

Nakatsuji T,Narala S.Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis.Sci Transl Med2017;9:eaah4680. PMCID:PMC5600545

[28]

Cartron ML,Chiriac AI.Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus.Antimicrob Agents Chemother2014;58:3599-609. PMCID:PMC4068517

[29]

Kenny JG,Josefsson E.The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications.PLoS One2009;4:e4344. PMCID:PMC2629846

[30]

Neumann Y,Donat S.The effect of skin fatty acids on Staphylococcus aureus.Arch Microbiol2015;197:245-67. PMCID:PMC4326651

[31]

Watanabe T,Miura M.Systematic analysis of selective bactericidal activity of fatty acids against Staphylococcus aureus with minimum inhibitory concentration and minimum bactericidal concentration.J Oleo Sci2019;68:291-6.

[32]

Schäfer L.Abnormalities in epidermal lipid metabolism in patients with atopic dermatitis.J Invest Dermatol1991;96:10-5.

[33]

Takigawa H,Kuzukawa M,Imokawa G.Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonization by Staphylococcus aureus.Dermatology2005;211:240-8.

[34]

Kikukawa H,Ando A.Microbial production of dihomo-γ-linolenic acid by Δ5-desaturase gene-disruptants of Mortierella alpina 1S-4.J Biosci Bioeng2016;122:22-6.

[35]

Kikukawa H,Kishino S.Characterization of a trifunctional fatty acid desaturase from oleaginous filamentous fungus Mortierella alpina 1S-4 using a yeast expression system.J Biosci Bioeng2013;116:672-6.

[36]

Kikukawa H,Hirono-Hara Y.Screening of plant oils promoting growth of the red yeast Xanthophyllomyces dendrorhous with astaxanthin and fatty acid production.Biocatal Agric Biotechnol2021;35:102101.

[37]

Takashima S,Yamamoto T.Positional determination of the carbon-carbon double bonds in unsaturated fatty acids mediated by solvent plasmatization using LC-MS.Sci Rep2020;10:12988. PMCID:PMC7395107

[38]

Mori T,Hazekawa M.Antimicrobial activities of LL-37 fragment mutant-poly (lactic-co-glycolic) acid conjugate against Staphylococcus aureus, Escherichia coli, and Candida albicans.Int J Mol Sci2021;22:5097. PMCID:PMC8151943

[39]

Fujita Y,Hirooka K.Regulation of fatty acid metabolism in bacteria.Mol Microbiol2007;66:829-39.

[40]

Nagao T,Hiraoka K.Microbial conversion of vegetable oil to rare unsaturated fatty acids and fatty alcohols by an Aeromonas hydrophila isolate.J Am Oil Chem Soc2009;86:1189.

[41]

Guerzoni ME,Cocconcelli PS.Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus.Microbiology2001;147:2255-64.

[42]

Rozès N.Effects of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum.Appl Microbiol Biotechnol1998;49:108-11.

[43]

Desbois AP.Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.Appl Microbiol Biotechnol2010;85:1629-42.

[44]

Parsons JB,Frank MW,Rock CO.Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus.J Bacteriol2012;194:5294-304. PMCID:PMC3457211

[45]

Tiwari KB,Wilkinson BJ.Plasticity of coagulase-negative staphylococcal membrane fatty acid composition and implications for responses to antimicrobial agents.Antibiotics2020;9:214. PMCID:PMC7277709

[46]

Nagao T,Yamashita K.Japanese Patent; 2020. Available from: https://www.j-platpat.inpit.go.jp/c1800/PU/JP-2020-005614/451E2C19D56321EF3C3A3B19680D315C98390CD272BDB07915F3D07699BAB143/11/ja[Last accessed on 16 Feb 2023]Methods of production of lipids and fatty acids, and the fatty acid compositions.

[47]

Okukawa M,Yano S.The selective antibacterial activity of the mixed systems containing myristic acid against staphylococci.J Oleo Sci2021;70:1239-46.

[48]

Cau L,Butcher AM.staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis.J Allergy Clin Immunol2021;147:955-66.e16. PMCID:PMC8058862

[49]

Nagao T,Sugino T,Kishimoto N. Control of skin microbiota with fatty acids: Rethinking the removal of “all” skin microorganisms. Available from: https://www.aocs.org/documents/InformPDF/INFORM_January_2020.pdf[Last accessed on 16 Feb 2023]

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/