A tool to assess the mock community samples in 16S rRNA gene-based microbiota profiling studies

Sudarshan A. Shetty , Jolanda Kool , Susana Fuentes

Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (2) : 14

PDF
Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (2) :14 DOI: 10.20517/mrr.2022.18
Technical Note

A tool to assess the mock community samples in 16S rRNA gene-based microbiota profiling studies

Author information +
History +
PDF

Abstract

Inclusion and investigation of technical controls in microbiome sequencing studies is important for understanding technical biases and errors. Here, we present chkMocks, a general R-based tool that allows researchers to compare the composition of mock communities that are processed along with samples to their theoretical composition. A visual comparison between experimental and theoretical community composition and their correlation is provided for researchers to assess the quality of their sample processing workflows.

Keywords

Mock community / microbiome profiling / positive control

Cite this article

Download citation ▾
Sudarshan A. Shetty, Jolanda Kool, Susana Fuentes. A tool to assess the mock community samples in 16S rRNA gene-based microbiota profiling studies. Microbiome Research Reports, 2023, 2(2): 14 DOI:10.20517/mrr.2022.18

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sorbie A,Weiler M.Protocol for microbiota analysis of a murine stroke model.STAR Protoc2023;4:101969 PMCID:PMC9843484

[2]

Love CJ,Kodikara S, Cao KA.Microbiota DNA isolation, 16S rRNA amplicon sequencing, and bioinformatic analysis for bacterial microbiome profiling of rodent fecal samples.STAR Protoc2022;3:101772 PMCID:PMC9597187

[3]

Ghosh TS.Chapter two - emerging tools for understanding the human microbiome.Prog Mol Biol Transl Sci2022;191:29-51

[4]

Amir A.Microbiome analysis using 16S amplicon sequencing: from samples to ASVs. In: Shomron N, editor. Deep sequencing data analysis. Methods in molecular biology. New York; 2021. pp. 123-41.

[5]

Hornung BVH,Kuijper EJ.Issues and current standards of controls in microbiome research.FEMS Microbiol Ecol2019;95 PMCID:PMC6469980

[6]

Kim D,Zhao C.Optimizing methods and dodging pitfalls in microbiome research.Microbiome2017;5:52 PMCID:PMC5420141

[7]

Bokulich NA,Robeson MS 2nd.Measuring the microbiome: best practices for developing and benchmarking microbiomics methods.Comput Struct Biotechnol J2020;18:4048-62 PMCID:PMC7744638

[8]

Parada AE,Fuhrman JA.Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples.Environ Microbiol2016;18:1403-14

[9]

Quince C,Curtis TP.Accurate determination of microbial diversity from 454 pyrosequencing data.Nat Methods2009;6:639-41

[10]

Karstens L,Davin S.Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments.mSystems2019;4 PMCID:PMC6550369

[11]

Salter SJ,Turek EM.Reagent and laboratory contamination can critically impact sequence-based microbiome analyses.BMC Biol2014;12:87 PMCID:PMC4228153

[12]

Minich JJ,Amir A,Gilbert JA.Quantifying and understanding well-to-well contamination in microbiome research.mSystems2019;4 PMCID:PMC6593221

[13]

Minich JJ,Janssen S.KatharoSeq enables high-throughput microbiome analysis from low-biomass samples.mSystems2018;3 PMCID:PMC5864415

[14]

Bokulich NA,Rideout JR.Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin.Microbiome2018;6:90 PMCID:PMC5956843

[15]

Bolyen E,Dillon MR.Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.Nat Biotechnol2019;37:852-7

[16]

Weinstein MM,Jin M,Bhasin JM.FIGARO: an efficient and objective tool for optimizing microbiome rRNA gene trimming parameters.bioRxiv2019:610394

[17]

Callahan BJ,Rosen MJ,Johnson AJ.DADA2: High-resolution sample inference from Illumina amplicon data.Nat Methods2016;13:581-3 PMCID:PMC4927377

[18]

Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. Available from: https://pdfs.semanticscholar.org/687f/973e9b1416a1289a86e58474e7259bdb57f1.pdf [Last accessed on 26 Apr 2023]

[19]

Wickham H,Bryan J.Welcome to the Tidyverse.J Open Res Softw2019;4:1686

[20]

Lahti L. Tools for microbiome analysis in R. Available from: https://bioconductor.org/packages/release/bioc/html/microbiome.html [Last accessed on 26 Apr 2023]

[21]

McMurdie PJ.phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.PLoS One2013;8:e61217 PMCID:PMC3632530

[22]

Pedersen TL. Patchwork: the composer of plots. Available from: https://github.com/thomasp85/patchwork [Last accessed on 26 Apr 2023]

[23]

Murali A,Wright ES.IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences.Microbiome2018;6:140 PMCID:PMC6085705

[24]

Ramiro-Garcia J,Giatsis C.NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes.F1000Res2016;5:1791 PMCID:PMC6419982

[25]

Shetty SA,Geerlings SY,de Vos WM.Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties.ISME J2022;16:2144-59 PMCID:PMC9381525

AI Summary AI Mindmap
PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/