Establishing genetic manipulation for novel strains of human gut bacteria

Paul O. Sheridan , Ma’en Al Odat , Karen P. Scott

Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (1) : 1

PDF
Microbiome Research Reports ›› 2023, Vol. 2 ›› Issue (1) :1 DOI: 10.20517/mrr.2022.13
Review

Establishing genetic manipulation for novel strains of human gut bacteria

Author information +
History +
PDF

Abstract

Recent years have seen the development of high-accuracy and high-throughput genetic manipulation techniques, which have greatly improved our understanding of genetically tractable microbes. However, challenges remain in establishing genetic manipulation techniques in novel organisms, owing largely to exogenous DNA defence mechanisms, lack of selectable markers, lack of efficient methods to introduce exogenous DNA and an inability of genetic vectors to replicate in their new host. In this review, we describe some of the techniques that are available for genetic manipulation of novel microorganisms. While many reviews exist that focus on the final step in genetic manipulation, the editing of recipient DNA, we particularly focus on the first step in this process, the transfer of exogenous DNA into a strain of interest. Examples illustrating the use of these techniques are provided for a selection of human gut bacteria in which genetic tractability has been established, such as Bifidobacterium, Bacteroides and Roseburia. Ultimately, this review aims to provide an information source for researchers interested in developing genetic manipulation techniques for novel bacterial strains, particularly those of the human gut microbiota.

Keywords

Gene transfer / conjugation / genetic manipulation / microbiota

Cite this article

Download citation ▾
Paul O. Sheridan, Ma’en Al Odat, Karen P. Scott. Establishing genetic manipulation for novel strains of human gut bacteria. Microbiome Research Reports, 2023, 2(1): 1 DOI:10.20517/mrr.2022.13

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhernakova A,Bonder MJ.LifeLines Cohort StudyPopulation-based metagenomics analysis reveals markers for gut microbiome composition and diversity.Science2016;352:565-9 PMCID:PMC8515199

[2]

Burt SJ.R factor transfer to obligate anaerobes from Escherichia coli.J Gen Microbiol1976;93:405-9

[3]

Mancini C.Transfer of multiple antibiotic resistance from Bacteroides fragilis to Escherichia coli.J Infect Dis1977;136:597-600

[4]

Burt SJ.Transfection of the Anaerobe Bacteroides thetaiotaomicron with Phage DNA.J Gen Microbiol1977;103:181-7

[5]

D’Elia JN.Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch.J Bacteriol1996;178:7173-9 PMCID:PMC178630

[6]

Martens EC,Chiang H.Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.PLoS Biol2011;9:e1001221 PMCID:PMC3243724

[7]

Luis AS,Zhang X.Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides.Nat Microbiol2018;3:210-9 PMCID:PMC5784806

[8]

Sieow BF,Yong WP,Chang MW.Tweak to treat: reprograming Bacteria for cancer treatment.Trends Cancer2021;7:447-464

[9]

Wu J,Kong J.Genetic tools for the development of recombinant lactic acid bacteria.Microb Cell Fact2021;20:118 PMCID:PMC8214781

[10]

Aminov RI,Duncan SH,Welling GW.Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale.Appl Environ Microbiol2006;72:6371-6 PMCID:PMC1563657

[11]

Rosero JA,Sechovcová H.Reclassification of Eubacterium rectale (Hauduroy et al. 1937) Prévot 1938 in a new genus Agathobacter gen. nov. as Agathobacter rectalis comb. nov., and description of Agathobacter ruminis sp. nov., isolated from the rumen contents of sheep and cows.Int J Syst Evol Microbiol2016;66:768-73

[12]

Sheridan PO,Walker AW,Louis P.Objections to the proposed reclassification of Eubacterium rectale as Agathobacter rectalis.Int J Syst Evol Microbiol2016;66:2106

[13]

O Sheridan P,Lawley TD.Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes.Microb Genom2016;2:e000043 PMCID:PMC5320581

[14]

Zuo G.Whole-genome-based phylogeny supports the objections against the reclassification of Eubacterium rectale to Agathobacter rectalis.Int J Syst Evol Microbiol2016;66:2451

[15]

Breuninger TA,Breuninger J.Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation.Microbiome2021;9:61 PMCID:PMC7967986

[16]

Barbosa TM,Flint HJ.Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria.Environ Microbiol1999;1:53-64

[17]

Melville CM,Mercer DK.Novel tetracycline resistance gene, tet(32), in the Clostridium-related human colonic anaerobe K10 and its transmission in vitro to the rumen anaerobe Butyrivibrio fibrisolvens.Antimicrob Agents Chemother2001;45:3246-9 PMCID:PMC90818

[18]

Scott KP,Mrazek J.Transfer of conjugative elements from rumen and human Firmicutes bacteria to Roseburia inulinivorans.Appl Environ Microbiol2008;74:3915-7 PMCID:PMC2446557

[19]

Sheridan PO,Minton NP,O’Toole PW.Heterologous gene expression in the human gut bacteria Eubacterium rectale and Roseburia inulinivorans by means of conjugative plasmids.Anaerobe2019;59:131-40

[20]

Sheridan PO,Scott KP.Conjugation protocol optimised for Roseburia inulinivorans and Eubacterium rectale.Bio Protoc2020;10:e3575 PMCID:PMC7842409

[21]

Kullen MJ.Genetic modification of intestinal lactobacilli and bifidobacteria.Curr Issues Mol Biol2000;2:41-50

[22]

Ruiz L,van Sinderen D.A resource for cloning and expression vectors designed for Bifidobacteria: overview of available tools and biotechnological applications. In: van Sinderen D, Ventura M, editors. Bifidobacteria. New York: Springer US; 2021. p. 157-82.

[23]

Arboleya S,Stanton C.Gut bifidobacteria populations in human health and aging.Front Microbiol2016;7:1204 PMCID:PMC4990546

[24]

O’Callaghan A.Bifidobacteria and their role as members of the human gut microbiota.Front Microbiol2016;7:925 PMCID:PMC4908950

[25]

Dineen RL,Kelleher P,O’Connell-Motherway M.Molecular analysis of the replication functions of the bifidobacterial conjugative megaplasmid pMP7017.Microb Biotechnol2021;14:1494-511 PMCID:PMC8313286

[26]

Zheng J,Salvetti E.A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae.Int J Syst Evol Microbiol2020;70:2782-858

[27]

Yadav R,Baweja M.Gene editing and genetic engineering approaches for advanced probiotics: a review.Crit Rev Food Sci Nutr2018;58:1735-46

[28]

Cuív ,Pottenger S,Shanahan ER.Isolation of genetically tractable most-wanted bacteria by metaparental mating.Sci Rep2015;5:13282 PMCID:PMC4642544

[29]

Chen I.DNA uptake during bacterial transformation.Nat Rev Microbiol2004;2:241-9

[30]

Wilson GG.Restriction and modification systems.Annu Rev Genet1991;25:585-627

[31]

Thomas CM.Mechanisms of, and barriers to, horizontal gene transfer between bacteria.Nat Rev Microbiol2005;3:711-21

[32]

Cohan FM,King EC.The potential for genetic exchange by transformation within a natural population of bacillus subtilis.Evolution1991;45:1393-421

[33]

Chang S.High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA.Mol Gen Genet1979;168:111-5

[34]

Mandel M.Calcium-dependent bacteriophage DNA infection.J Mol Biol1970;53:159-62

[35]

Chassy B.Transformation of bacteria by electroporation.Trends Biotechnol1988;6:303-9

[36]

Song Y,Thompson IP.Ultrasound-mediated DNA transfer for bacteria.Nucleic Acids Res2007;35:e129 PMCID:PMC2095817

[37]

Shark KB,Harpending PR,Sanford JC.Biolistic transformation of a procaryote, Bacillus megaterium.Appl Environ Microbiol1991;57:480-5 PMCID:PMC182736

[38]

Elliott AR,Xue GP,Tekaia-Elhsissen K.Transformation of Bacillus subtilis using the particle inflow gun and submicrometer particles obtained by the polyol process.Anal Biochem1999;269:418-20

[39]

Yoshida N.Plasmid DNA is released from nanosized acicular material surface by low molecular weight oligonucleotides: exogenous plasmid acquisition mechanism for penetration intermediates based on the Yoshida effect.Appl Microbiol Biotechnol2008;80:813-21

[40]

Yoshida N.Plasmid uptake by bacteria: a comparison of methods and efficiencies.Appl Microbiol Biotechnol2009;83:791-8

[41]

Salyers AA,Stevens AM.Conjugative transposons: an unusual and diverse set of integrated gene transfer elements.Microbiol Rev1995;59:579-90 PMCID:PMC239388

[42]

Lee CA,Grossman AD.Autonomous plasmid-like replication of a conjugative transposon.Mol Microbiol2010;75:268-79 PMCID:PMC2905045

[43]

te Poele EM, Bolhuis H, Dijkhuizen L. Actinomycete integrative and conjugative elements.Antonie Van Leeuwenhoek2008;94:127-43 PMCID:PMC2440964

[44]

Wang J,Shoemaker NB.Production of two proteins encoded by the Bacteroides mobilizable transposon NBU1 correlates with time-dependent accumulation of the excised NBu1 circular form.J Bacteriol2001;183:6335-43 PMCID:PMC100129

[45]

Clewell D,Jaworski D.Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons.Trends Microbiol1995;3:229-36

[46]

Scott KP.The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract.Cell Mol Life Sci2002;59:2071-82

[47]

Haraldsen JD.Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene.Mol Microbiol2003;48:811-21

[48]

Pelicic V,Gicquel B.Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria.J Bacteriol1996;178:1197-9 PMCID:PMC177784

[49]

Ried JL.An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagenesis.Gene1987;57:239-46

[50]

Schweizer HP.Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker.Mol Microbiol1992;6:1195-204

[51]

Wu SS.Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene.J Bacteriol1996;178:5817-21 PMCID:PMC178429

[52]

Fabret C,Noirot P.A new mutation delivery system for genome-scale approaches in Bacillus subtilis.Mol Microbiol2002;46:25-36

[53]

Sakaguchi K,Tani S,Suzuki T.A targeted gene knockout method using a newly constructed temperature-sensitive plasmid mediated homologous recombination in Bifidobacterium longum.Appl Microbiol Biotechnol2012;95:499-509

[54]

Casjens SR.The DNA-packaging nanomotor of tailed bacteriophages.Nat Rev Microbiol2011;9:647-57

[55]

Labrie SJ,Moineau S.Bacteriophage resistance mechanisms.Nat Rev Microbiol2010;8:317-27

[56]

Goh S,Chang BJ,Riley TV.Phage ϕC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains.mBio2013;4:e00840-13 PMCID:PMC3870246

[57]

Löfblom J,Uhlén M,Wernérus H.Optimization of electroporation-mediated transformation: staphylococcus carnosus as model organism.J Appl Microbiol2007;102:736-47

[58]

Bhattacharjee D.Factors and conditions that impact electroporation of Clostridioides difficile strains.mSphere2020;5:e00941-19 PMCID:PMC7056809

[59]

Aukrust T.Transformation of Lactobacillus strains used in meat and vegetable fermentations.Food Res Int1992;25:253-61

[60]

Buckley ND,LeBlanc DJ,Frenette M.An effective strategy, applicable to Streptococcus salivarius and related bacteria, to enhance or confer electroporation competence.Appl Environ Microbiol1999;65:3800-4 PMCID:PMC99703

[61]

Dunny GM,LeBlanc DJ.Improved electroporation and cloning vector system for gram-positive bacteria.Appl Environ Microbiol1991;57:1194-201 PMCID:PMC182867

[62]

Holo H.High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media.Appl Environ Microbiol1989;55:3119-23 PMCID:PMC203233

[63]

Sun Z,Zhurina D,Riedel CU.Accessing the inaccessible: molecular tools for bifidobacteria.Appl Environ Microbiol2012;78:5035-42 PMCID:PMC3416414

[64]

Argnani A,van Luijk N.A convenient and reproducible method to genetically transform bacteria of the genus Bifidobacterium.Microbiology1996;142:109-14

[65]

Serafini F,Guglielmetti S.An efficient and reproducible method for transformation of genetically recalcitrant bifidobacteria.FEMS Microbiol Lett2012;333:146-52

[66]

Chai D,Fang L.The optimization system for preparation of TG1 competent cells and electrotransformation.Microbiologyopen2020;9:e1043 PMCID:PMC7349126

[67]

Huang PH,Shiver AL,Huang KC.M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform.PLoS Biol2022;20:e3001727 PMCID:PMC9481174

[68]

Augustin J.Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation.FEMS Microbiol Lett1990;66:203-7

[69]

Schenk S.Improved method for electroporation of Staphylococcus aureus.FEMS Microbiol Lett1992;94:133-8

[70]

Tu Q,Fu J.Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.Sci Rep2016;6:24648 PMCID:PMC4837392

[71]

Hanahan D.Studies on transformation of Escherichia coli with plasmids.J Mol Biol1983;166:557-80

[72]

Simon R,Pühler A.A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative Bacteria.Nat Biotechnol1983;1:784-91

[73]

Williams DR,Young M.Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum.J Gen Microbiol1990;136:819-26

[74]

Piekarski T,Drepper T.Genetic tools for the investigation of Roseobacter clade bacteria.BMC Microbiol2009;9:265 PMCID:PMC2811117

[75]

Purdy D,Elmore M.Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier.Mol Microbiol2002;46:439-52

[76]

Richhardt J,Meinhardt F.An improved transconjugation protocol for Bacillus megaterium facilitating a direct genetic knockout.Appl Microbiol Biotechnol2010;86:1959-65

[77]

Schäfer A,Simon R,Pühler A.High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria.J Bacteriol1990;172:1663-6 PMCID:PMC208647

[78]

Donahue JP,Peek RM,Miller GG.Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori.Mol Microbiol2000;37:1066-74

[79]

Kwak J,Kendrick KE.Transformation using in vivo and in vitro methylation in Streptomyces griseus.FEMS Microbiol Lett2002;209:243-8

[80]

Yasui K,Tanaka K.Improvement of bacterial transformation efficiency using plasmid artificial modification.Nucleic Acids Res2009;37:e3 PMCID:PMC2615632

[81]

Edwards RA,Maloy SR.Increasing DNA transfer efficiency by temporary inactivation of host restriction.Biotechniques1999;26:892-4, 896, 898 passim

[82]

Lin YL.Transformation of heat-treated clostridium acetobutylicum protoplasts with pUB110 plasmid DNA.Appl Environ Microbiol1984;48:737-42 PMCID:PMC241604

[83]

Kirk JA.Heat shock increases conjugation efficiency in Clostridium difficile.Anaerobe2016;42:1-5 PMCID:PMC5154368

[84]

Chen Q,Benoit VM,Youderian P.In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56.J Bacteriol2008;190:7885-91 PMCID:PMC2593207

[85]

Greene P,Nussbaum A.Restriction and modification of a self-complementary octanucleotide containing the EcoRI substrate.J Mol Biol1975;99:237-61

[86]

Monk IR.Genetic manipulation of Staphylococci-breaking through the barrier.Front Cell Infect Microbiol2012;2:49 PMCID:PMC3417578

[87]

Kreiswirth BN,Betley MJ.The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage.Nature1983;305:709-12

[88]

Fang F,Bumann M.Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.J Bacteriol2009;191:5743-57

[89]

van Pijkeren JP, Britton RA. High efficiency recombineering in lactic acid bacteria.Nucleic Acids Res2012;40:e76 PMCID:PMC3378904

[90]

O’Connell Motherway M, O’Driscoll J, Fitzgerald GF, Van Sinderen D. Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003.Microb Biotechnol2009;2:321-32 PMCID:PMC3815753

[91]

Guzman LM,Carson MJ.Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.J Bacteriol1995;177:4121-30 PMCID:PMC177145

[92]

Hoedt EC,Cash N.Broad purpose vector for site-directed insertional mutagenesis in Bifidobacterium breve.Front Microbiol2021;12:636822 PMCID:PMC8021953

[93]

De Ste Croix M,Kwun MJ.Phase-variable methylation and epigenetic regulation by type I restriction-modification systems.FEMS Microbiol Rev2017;41:S3-S15

[94]

De Maio N,Hubbard A.Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes.Microb Genom2019;5:e000294 PMCID:PMC6807382

[95]

García-Bayona L.Streamlined genetic manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota.mBio2019;10:e01762-19 PMCID:PMC6692515

[96]

Zeaiter Z,Crotti E.Methods for the genetic manipulation of marine bacteria.Electron J Biotechnol2018;33:17-28

[97]

Gagarinova A.Genome-scale genetic manipulation methods for exploring bacterial molecular biology.Mol Biosyst2012;8:1626-38

[98]

Murphy KC.Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli.J Bacteriol1998;180:2063-71 PMCID:PMC107131

[99]

Yu H,Li H,Shen Z.Construction and selection of the novel recombinant Escherichia coli strain for poly(β-hydroxybutyrate) production.J Biosci Bioeng2000;89:307-11

[100]

Zhang Y,Muyrers JP.A new logic for DNA engineering using recombination in Escherichia coli.Nat Genet1998;20:123-8

[101]

van Kessel JC, Hatfull GF. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets.Mol Microbiol2008;67:1094-107

[102]

Wang S,Leiby M.A new positive/negative selection scheme for precise BAC recombineering.Mol Biotechnol2009;42:110-6 PMCID:PMC2669495

[103]

Warner JR,Karimpour-Fard A,Gill RT.Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides.Nat Biotechnol2010;28:856-62

[104]

Dalia AB,Camilli A.Multiplex genome editing by natural transformation.Proc Natl Acad Sci USA2014;111:8937-42 PMCID:PMC4066482

[105]

Dalia TN,Stolyar S,McKinlay JB.Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in vibrio natriegens.ACS Synth Biol2017;6:1650-1655 PMCID:PMC6519440

[106]

Dalia TN,Stolyar S,McKinlay JB.Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in vibrio natriegens.ACS Synth Biol2017;6:1650-5 PMCID:PMC6519440

[107]

Gao L,Böhning F.Diverse enzymatic activities mediate antiviral immunity in prokaryotes.Science2020;369:1077-84 PMCID:PMC7985843

[108]

Selle K,Barrangou R.CRISPR-based screening of genomic island excision events in bacteria.Proc Natl Acad Sci USA2015;112:8076-81 PMCID:PMC4491743

[109]

Sorek R,Wiedenheft B.CRISPR-mediated adaptive immune systems in bacteria and archaea.Annu Rev Biochem2013;82:237-66

[110]

Makarova KS,Iranzo J.Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants.Nat Rev Microbiol2020;18:67-83 PMCID:PMC8905525

[111]

Selle K.Harnessing CRISPR-Cas systems for bacterial genome editing.Trends Microbiol2015;23:225-32

[112]

Wasels F,Collas F,Lopes Ferreira N.A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.J Microbiol Methods2017;140:5-11

[113]

Pan M,Hidalgo-Cantabrana C.Genomic and epigenetic landscapes drive CRISPR-based genome editing in Bifidobacterium.Proc Natl Acad Sci USA2022;119:e2205068119 PMCID:PMC9335239

[114]

Rubin BE,Cress BF.Species- and site-specific genome editing in complex bacterial communities.Nat Microbiol2022;7:34-47 PMCID:PMC9261505

[115]

Vo PLH,Klompe SE.CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering.Nat Biotechnol2021;39:480-9

[116]

Langridge GC,Turner DJ.Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants.Genome Res2009;19:2308-16 PMCID:PMC2792183

[117]

Gawronski JD,Giannoukos G,Akerley BJ.Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung.Proc Natl Acad Sci USA2009;106:16422-7 PMCID:PMC2752563

[118]

van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms.Nat Methods2009;6:767-72 PMCID:PMC2957483

[119]

Goodman AL,Zhao Y.Identifying genetic determinants needed to establish a human gut symbiont in its habitat.Cell Host Microbe2009;6:279-89 PMCID:PMC2895552

[120]

Todor H,Osadnik H.Bacterial CRISPR screens for gene function.Curr Opin Microbiol2021;59:102-9 PMCID:PMC8331264

[121]

Loman NJ,Chan JZ.High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity.Nat Rev Microbiol2012;10:599-606

[122]

Daniel AS,Vanat I,Flint HJ.Expression of a cloned cellulase/xylanase gene from Prevotella ruminicola in Bacteroides vulgatus, Bacteroides uniformis and Prevotella ruminicola.J Appl Bacteriol1995;79:417-24

[123]

Shoemaker NB,Smithson SL,Salyers AA.Conjugal transfer of a shuttle vector from the human colonic anaerobe Bacteroides uniformis to the ruminal anaerobe Prevotella (Bacteroides) ruminicola B14.Appl Environ Microbiol1991;57:2114-20 PMCID:PMC183537

[124]

Béchet M,Flint HJ,Dubourguier H-C.Transfer of hybrid plasmids based on the replicon pRRI7 from Escherichia coli to Bacteroides and Prevotella strains.J Appl Bacteriol1993;74:542-548

[125]

Asmundson RV.Isolation and characterization of plasmid DNA fromRuminococcus.Curr Microbiol1987;16:97-100

[126]

Ohara H,Kaneichi K.Structural analysis of a new cryptic plasmid pAR67 isolated from Ruminococcus albus AR67.Plasmid1998;39:84-8

[127]

May T,Mackie RI,White BA.Complete nucleotide sequence of a cryptic plasmid, pBAW301, from the ruminal anaerobe Ruminococcus flavefaciens R13e2.FEMS Microbiol Lett1996;144:221-7

[128]

Aminov RI,Miyagi T,Ohmiya K.Construction of genetically marked Ruminococcus albus strains and conjugal transfer of plasmid pAMβ1 into them.J Fermentation Bioeng1994;78:1-5

[129]

Cocconcelli PS,Rossi F.Plasmid transformation of Ruminococcus albus by means of high-voltage electroporation.FEMS Microbiol Lett1992;94:203-7

[130]

Cocconcelli P,Morelli L.Single-stranded DNA plasmid, vector construction and cloning of Bacillus stearothermophilus α-amilase in Lactobacillus.Res Microbiol1991;142:643-52

[131]

Collins ME,Young M.Identification of restriction fragments from two cryptic Clostridium butyricum plasmids that promote the establishment of a replication-defective plasmid in Bacillus subtilis.J Gen Microbiol1985;131:2097-105

[132]

Heap JT,Ehsaan M.The ClosTron: Mutagenesis in Clostridium refined and streamlined.J Microbiol Methods2010;80:49-55

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/