PDF
Abstract
A microbiome consists of microbes and their genomes, encompassing bacteria, viruses, fungi, protozoa, archaea, and eukaryotes. These elements interact dynamically in the specific environment in which they reside and evolve. In the past decade, studies of various microbiomes have been prevalent in the scientific literature, accounting for the shift from culture-dependent to culture-independent identification of microbes using new high-throughput sequencing technologies that decipher their composition and sometimes provide insights into their functions. Despite tremendous advances in understanding the gut microbiome, relatively little attention has been devoted to the vaginal environment, notably regarding the ubiquity and diversity of glycans which denote the significant role they play in the maintenance of homeostasis. Hopefully, emerging technologies will aid in the determination of what is a healthy vaginal microbiome, and provide insights into the roles of Lactobacillus, glycans and microbiome-related drivers of health and disease.
Keywords
Glycans
/
vaginal
/
microbiome
/
Lactobacillus
/
immunity
Cite this article
Download citation ▾
Rosemary Sanozky-Dawes, Rodolphe Barrangou.
Lactobacillus, glycans and drivers of health in the vaginal microbiome.
Microbiome Research Reports, 2022, 1(3): 18 DOI:10.20517/mrr.2022.03
| [1] |
Stout MJ,Gula H,Wylie KM.The microbiome of the human female reproductive tract.Current Opinion in Physiology2020;13:87-93
|
| [2] |
Kho ZY.The human gut microbiome - a potential controller of wellness and disease.Front Microbiol2018;9:1835 PMCID:PMC6102370
|
| [3] |
Koedooder R,Budding A.Identification and evaluation of the microbiome in the female and male reproductive tracts.Hum Reprod Update2019;25:298-325
|
| [4] |
Chen X,Chen T.The female vaginal microbiome in health and bacterial vaginosis.Front Cell Infect Microbiol2021;11:631972 PMCID:PMC8058480
|
| [5] |
France M,Brown S,Ravel J.Towards a deeper understanding of the vaginal microbiota.Nat Microbiol2022;7:367-78 PMCID:PMC8910585
|
| [6] |
Petrova MI,Malik S,Lebeer S.Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health.Front Physiol2015;6:81 PMCID:PMC4373506
|
| [7] |
Delgado-Diaz DJ,Hayward JA,Hearps AC.Distinct immune responses elicited from cervicovaginal epithelial cells by lactic acid and short chain fatty acids associated with optimal and non-optimal vaginal microbiota.Front Cell Infect Microbiol2019;9:446 PMCID:PMC6965070
|
| [8] |
Kaambo E,Chambuso R.Vaginal microbiomes associated with aerobic vaginitis and bacterial vaginosis.Front Public Health2018;6:78 PMCID:PMC5879096
|
| [9] |
Vaneechoutte M.The human vaginal microbial community.Res Microbiol2017;168:811-25
|
| [10] |
Petrova MI,Vaneechoutte M.Lactobacillus iners: friend or foe?.Trends Microbiol2017;25:182-91
|
| [11] |
Johnson B,O’Flaherty S,Klaenhammer T.Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM.Microbiology (Reading)2013;159:2269-82 PMCID:PMC3836491
|
| [12] |
Vagios S.Mutual preservation: a review of interactions between cervicovaginal mucus and microbiota.Front Cell Infect Microbiol2021;11:676114 PMCID:PMC8313892
|
| [13] |
Gliniewicz K,Ridenhour BJ.Comparison of the vaginal microbiomes of premenopausal and postmenopausal women.Front Microbiol2019;10:193 PMCID:PMC6382698
|
| [14] |
Amabebe E.The vaginal microenvironment: the physiologic role of Lactobacilli.Front Med (Lausanne)2018;5:181 PMCID:PMC6008313
|
| [15] |
Witkin SS.Why do Lactobacilli dominate the human vaginal microbiota?.BJOG2017;124:606-11
|
| [16] |
Vaneechoutte M.Lactobacillus iners, the unusual suspect.Res Microbiol2017;168:826-36
|
| [17] |
Tytgat HLP.Sugar coating the envelope: glycoconjugates for microbe-host crosstalk.Trends Microbiol2016;24:853-61
|
| [18] |
Pereira MS,Vicente M.Glycans as key checkpoints of T cell activity and function.Front Immunol2018;9:2754 PMCID:PMC6277680
|
| [19] |
Clark GF.Manifestations of immune tolerance in the human female reproductive tract.Front Immunol2013;4:26 PMCID:PMC3570961
|
| [20] |
Rabinovich GA.Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation.Nat Rev Immunol2009;9:338-52
|
| [21] |
Johnson BR,Sanozky-Dawes R,Barrangou R.Conserved S-layer-associated proteins revealed by exoproteomic survey of S-layer-forming Lactobacilli.Appl Environ Microbiol2016;82:134-45 PMCID:PMC4702614
|
| [22] |
Hymes JP.Stuck in the middle: fibronectin-binding proteins in gram-positive bacteria.Front Microbiol2016;7:1504 PMCID:PMC5031765
|
| [23] |
Lin B,Liao J.Role of protein glycosylation in host-pathogen interaction.Cells2020;9:1022 PMCID:PMC7226260
|
| [24] |
Konstantinov SR,de Vos WM.S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions.Proc Natl Acad Sci U S A2008;105:19474-9 PMCID:PMC2592362
|
| [25] |
Lightfoot YL,Yang T.SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis.EMBO J2015;34:881-95 PMCID:PMC4388597
|
| [26] |
Acosta M, Geoghegan EM, Lepenies B, Ruzal S, Kielian M, Martinez MG. Surface (S) layer proteins of Lactobacillus acidophilus block virus infection via DC-SIGN interaction.Front Microbiol2019;10:810 PMCID:PMC6477042
|
| [27] |
Klotz C,O'Flaherty S.S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM.BMC Microbiol2020;20:248 PMCID:PMC7425073
|
| [28] |
Hymes JP,Barrangou R.Functional analysis of an S-layer-associated fibronectin-binding protein in Lactobacillus acidophilus NCFM.Appl Environ Microbiol2016;82:2676-85 PMCID:PMC4836419
|
| [29] |
Johnson BR.AcmB is an S-layer-associated β-N-acetylglucosaminidase and functional autolysin in Lactobacillus acidophilus NCFM.Appl Environ Microbiol2016;82:5687-97 PMCID:PMC5007774
|
| [30] |
Varki A.Biological roles of glycans.Glycobiology2017;27:3-49 PMCID:PMC5884436
|
| [31] |
Karamanos NK,Piperigkou Z.A guide to the composition and functions of the extracellular matrix.FEBS J2021;288:6850-912
|
| [32] |
Antikainen J,Sillanpää J.Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly.Mol Microbiol2002;46:381-94
|
| [33] |
Sillanpää J,Antikainen J.Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus.J Bacteriol2000;182:6440-50 PMCID:PMC94791
|
| [34] |
Sun Z,Hu S,Lu W.Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen.Appl Microbiol Biotechnol2013;97:1941-52
|
| [35] |
Abramov V,Kosarev I.Probiotic properties of Lactobacillus crispatus 2029: homeostatic interaction with cervicovaginal epithelial cells and antagonistic activity to genitourinary pathogens.Probiotics Antimicrob Proteins2014;6:165-76
|
| [36] |
Abramov VM,Priputnevich TV.S-layer protein 2 of Lactobacillus crispatus 2029, its structural and immunomodulatory characteristics and roles in protective potential of the whole bacteria against foodborne pathogens.Int J Biol Macromol2020;150:400-12
|
| [37] |
Pan M,Barrangou R.Host and body site-specific adaptation of Lactobacillus crispatus genomes.NAR Genom Bioinform2020;2:lqaa001 PMCID:PMC7671364
|
| [38] |
Tytgat HL.The sweet tooth of bacteria: common themes in bacterial glycoconjugates.Microbiol Mol Biol Rev2014;78:372-417 PMCID:PMC4187687
|
| [39] |
McKitrick TR,Anthony RM.The crossroads of glycoscience, infection, and immunology.Front Microbiol2021;12:731008 PMCID:PMC8504252
|
| [40] |
Hynönen U.Lactobacillus surface layer proteins: structure, function and applications.Appl Microbiol Biotechnol2013;97:5225-43 PMCID:PMC3666127
|
| [41] |
Fina Martin J,Cutine AM.Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356.Appl Microbiol Biotechnol2019;103:4839-57
|
| [42] |
Varki A.Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of glycobiology [Internet]. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 7.
|
| [43] |
Schauer R.Sialic acids as regulators of molecular and cellular interactions.Curr Opin Struct Biol2009;19:507-14 PMCID:PMC7127376
|
| [44] |
Varki A.Sialic acids in human health and disease.Trends Mol Med2008;14:351-60 PMCID:PMC2553044
|
| [45] |
Cohen M.The sialome - far more than the sum of its parts.OMICS2010;14:455-64
|
| [46] |
Lübbers J,van Kooyk Y.Modulation of immune tolerance via siglec-sialic acid interactions.Front Immunol2018;9:2807 PMCID:PMC6293876
|
| [47] |
Cummings RD,Esko JD,Taylor ME.Principles of glycan recognition. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of glycobiology [Internet]. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 29.
|
| [48] |
Mariano VS,da Silva TA.Recognition of TLR2 N-glycans: critical role in ArtinM immunomodulatory activity.PLoS One2014;9:e98512 PMCID:PMC4043963
|
| [49] |
Simpson DJ,Szymanski CM.Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates.Curr Opin Struct Biol2015;34:69-77
|
| [50] |
Bousfield GR,Davis JS,Kumar TR.In vivo and in vitro impact of carbohydrate variation on human follicle-stimulating hormone function.Front Endocrinol (Lausanne)2018;9:216 PMCID:PMC5960776
|
| [51] |
Campo S,Ambao V,Calandra RS.Hormonal regulation of follicle-stimulating hormone glycosylation in males.Front Endocrinol (Lausanne)2019;10:17 PMCID:PMC6361742
|
| [52] |
Willey KP.An elusive role for glycosylation in the structure and function of reproductive hormones.Hum Reprod Update1999;5:330-55
|
| [53] |
Rabinovich GA,Cobb BA.Glycobiology of immune responses.Ann N Y Acad Sci2012;1253:1-15 PMCID:PMC3884643
|
| [54] |
Moncla BJ,Mahal LK,Meyn LA.Impact of bacterial vaginosis, as assessed by nugent criteria and hormonal status on glycosidases and lectin binding in cervicovaginal lavage samples.PLoS One2015;10:e0127091 PMCID:PMC4444347
|
| [55] |
Mahlapuu M,Ringstad L.Antimicrobial peptides: an emerging category of therapeutic agents.Front Cell Infect Microbiol2016;6:194 PMCID:PMC5186781
|
| [56] |
Yarbrough VL,Herbst-Kralovetz MM.Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications.Hum Reprod Update2015;21:353-77
|
| [57] |
Lewis AL.Host sialoglycans and bacterial sialidases: a mucosal perspective.Cell Microbiol2012;14:1174-82
|
| [58] |
Moncla BJ,Debo BM.The effects of hormones and vaginal microflora on the glycome of the female genital tract: cervical-vaginal fluid.PLoS One2016;11:e0158687 PMCID:PMC4954690
|
| [59] |
Morrill S,Lewis AL.Gardnerella vaginalis as a cause of bacterial vaginosis: appraisal of the evidence from in vivo models.Front Cell Infect Microbiol2020;10:168 PMCID:PMC7193744
|
| [60] |
Hardy L,Jespers V,Crucitti T.Bacterial biofilms in the vagina.Res Microbiol2017;168:865-74
|
| [61] |
Castro J,Cerca N.Unveiling the role of Gardnerella vaginalis in polymicrobial bacterial vaginosis biofilms: the impact of other vaginal pathogens living as neighbors.ISME J2019;13:1306-17 PMCID:PMC6474217
|
| [62] |
Lewis WG,Gilbert NM,Lewis AL.Degradation, foraging, and depletion of mucus sialoglycans by the vagina-adapted Actinobacterium Gardnerella vaginalis.J Biol Chem2013;288:12067-79 PMCID:PMC3636892
|
| [63] |
Smith SB.The vaginal microbiota, host defence and reproductive physiology.J Physiol2017;595:451-63 PMCID:PMC5233653
|
| [64] |
Hoang T,DeLong K.The cervicovaginal mucus barrier to HIV-1 is diminished in bacterial vaginosis.PLoS Pathog2020;16:e1008236 PMCID:PMC6999914
|
| [65] |
France MT,Rutt L.Insight into the ecology of vaginal bacteria through integrative analyses of metagenomic and metatranscriptomic data.Genome Biol2022;23:66 PMCID:PMC8886902
|
| [66] |
France MT,Narina S.Complete genome sequences of six Lactobacillus iners strains isolated from the human vagina.Microbiol Resour Announc2020;9:e00234-20 PMCID:PMC7225536
|
| [67] |
Varki A,Schauer R.Sialic acids and other nonulosonic acids. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of glycobiology [Internet]. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 15.
|
| [68] |
Varki NM.Diversity in cell surface sialic acid presentations: implications for biology and disease.Lab Invest2007;87:851-7 PMCID:PMC7100186
|
| [69] |
Raposo CD,Barros MT.Human lectins, their carbohydrate affinities and where to find them.Biomolecules2021;11:188 PMCID:PMC7911577
|
| [70] |
Koppolu S,Mathur A.Vaginal product formulation alters the innate antiviral activity and glycome of cervicovaginal fluids with implications for viral susceptibility.ACS Infect Dis2018;4:1613-22
|
| [71] |
Sun Z,McCann A.Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera.Nat Commun2015;6:8322 PMCID:PMC4667430
|
| [72] |
Zhou X,Stanton C.Comparative analysis of Lactobacillus gasseri from Chinese subjects reveals a new species-level taxa.BMC Genomics2020;21:119 PMCID:PMC6998098
|
| [73] |
Lee S,Kwon B.Complete genome sequence of Lactobacillus jensenii strain SNUV360, a probiotic for treatment of bacterial vaginosis isolated from the vagina of a healthy Korean woman.Genome Announc2017;5:e01757-16 PMCID:PMC5347252
|
| [74] |
Bonnardel F,Dell A.Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome.NPJ Biofilms Microbiomes2021;7:49 PMCID:PMC8206207
|
| [75] |
Espino E,Mato-Rodriguez L.Uncovering surface-exposed antigens of Lactobacillus rhamnosus by cell shaving proteomics and two-dimensional immunoblotting.J Proteome Res2015;14:1010-24
|
| [76] |
Campanero-Rhodes MA,Menéndez M.Microarray strategies for exploring bacterial surface glycans and their interactions with glycan-binding proteins.Front Microbiol2019;10:2909 PMCID:PMC6972965
|
| [77] |
Halim A.Microbial glycoproteomics.Curr Opin Struct Biol2017;44:143-50
|
| [78] |
Oliveira de Almeida M,Figueira Aburjaile F.Characterization of the first vaginal Lactobacillus crispatus genomes isolated in Brazil.PeerJ2021;9:e11079 PMCID:PMC7955673
|
| [79] |
van der Veer C,Bruisten SM.Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: implications for in vivo dominance of the vaginal microbiota.Microbiome2019;7:49 PMCID:PMC6441167
|
| [80] |
Mendes-Soares H,Hickey RJ.Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment.J Bacteriol2014;196:1458-70 PMCID:PMC3993339
|
| [81] |
Tyagi T,Leong Y,Shynlova O.Local oestrogen therapy modulates extracellular matrix and immune response in the vaginal tissue of post-menopausal women with severe pelvic organ prolapse.J Cell Mol Med2019;23:2907-19 PMCID:PMC6433658
|
| [82] |
Bradford LL.The vaginal mycobiome: a contemporary perspective on fungi in women’s health and diseases.Virulence2017;8:342-51 PMCID:PMC5411243
|
| [83] |
Puebla-Barragan S,van der Veer C.Interstrain variability of human vaginal Lactobacillus crispatus for metabolism of biogenic amines and antimicrobial activity against urogenital pathogens.Molecules2021;26:4538 PMCID:PMC8347528
|
| [84] |
Gabriel IM,Welch WR,Cramer DW.Douching, talc use, and risk for ovarian cancer and conditions related to genital tract inflammation.Cancer Epidemiol Biomarkers Prev2019;28:1835-44 PMCID:PMC6825572
|
| [85] |
Dunbar B,Fahey J.Endocrine control of mucosal immunity in the female reproductive tract: impact of environmental disruptors.Mol Cell Endocrinol2012;354:85-93 PMCID:PMC4332593
|
| [86] |
Mancini V.Organs-on-chip models of the female reproductive system.Bioengineering (Basel)2019;6:103 PMCID:PMC6956296
|
| [87] |
Hearps AC,Srbinovski D.Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition.Mucosal Immunol2017;10:1480-90
|
| [88] |
Chaichian S,Sadoughi F,Zaroudi M.Functional activities of beta-glucans in the prevention or treatment of cervical cancer.J Ovarian Res2020;13:24 PMCID:PMC7057557
|
| [89] |
Ferreira IG,Venturi G,Chiricolo M.Glycosylation as a main regulator of growth and death factor receptors signaling.Int J Mol Sci2018;19:580 PMCID:PMC5855802
|
| [90] |
Zhou JZ,Chen K.Immunology of uterine and vaginal mucosae: (trends in immunology 39, 302-314, 2018).Trends Immunol2018;39:355 PMCID:PMC5880711
|
| [91] |
Fichorova RN,Cu-Uvin S.Protozoan-viral-bacterial co-infections alter galectin levels and associated immunity mediators in the female genital tract.Front Cell Infect Microbiol2021;11:649940 PMCID:PMC8375472
|