The evolution of bacterial genome assemblies - where do we need to go next?

Eric Altermann , Halina E. Tegetmeyer , Ryan M. Chanyi

Microbiome Research Reports ›› 2022, Vol. 1 ›› Issue (3) : 15

PDF
Microbiome Research Reports ›› 2022, Vol. 1 ›› Issue (3) :15 DOI: 10.20517/mrr.2022.02
Perspective

The evolution of bacterial genome assemblies - where do we need to go next?

Author information +
History +
PDF

Abstract

Genome sequencing has fundamentally changed our ability to decipher and understand the genetic blueprint of life and how it changes over time in response to environmental and evolutionary pressures. The pace of sequencing is still increasing in response to advances in technologies, paving the way from sequenced genes to genomes to metagenomes to metagenome-assembled genomes (MAGs). Our ability to interrogate increasingly complex microbial communities through metagenomes and MAGs is opening up a tantalizing future where we may be able to delve deeper into the mechanisms and genetic responses emerging over time. In the near future, we will be able to detect MAG assembly variations within strains originating from diverging sub-populations, and one of the emerging challenges will be to capture these variations in a biologically relevant way. Here, we present a brief overview of sequencing technologies and the current state of metagenome assemblies to suggest the need to develop new data formats that can capture the genetic variations within strains and communities, which previously remained invisible due to sequencing technology limitations.

Keywords

Genome assembly / next-generation genome sequencing / single-cell sequencing / assembly / genome variations / artificial intelligence / data formats

Cite this article

Download citation ▾
Eric Altermann, Halina E. Tegetmeyer, Ryan M. Chanyi. The evolution of bacterial genome assemblies - where do we need to go next?. Microbiome Research Reports, 2022, 1(3): 15 DOI:10.20517/mrr.2022.02

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu R.Nucleotide sequence analysis of DNA.J Mol Biol1971;57:491-511

[2]

Sanger F.The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates.Biochem J1951;49:463-81 PMCID:PMC1197535

[3]

Sanger F.The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hydrolysates.Biochem J1953;53:366-74 PMCID:PMC1198158

[4]

Sanger F.The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates.Biochem J1953;53:353-66 PMCID:PMC1198157

[5]

Holley RW,Everett GA.Structure of a ribonucleic acid.Science1965;147:1462-5

[6]

Sanger F.A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase.J Mol Biol1975;94:441-8

[7]

Maxam AM.A new method for sequencing DNA.Proc Natl Acad Sci U S A1977;74:560-4 PMCID:PMC7661214

[8]

Barnes WM.DNA sequencing by partial ribosubstitution.J Mol Biol1978;119:83-99

[9]

Sanger F,Coulson AR.DNA sequencing with chain-terminating inhibitors.Proc Natl Acad Sci U S A1977;74:5463-7 PMCID:PMC431765

[10]

Smith V,Bankier AT.Semiautomated preparation of DNA templates for large-scale sequencing projects.DNA Seq1990;1:73-8

[11]

Fujita M,Kiyama M.Chemical robot for enzymatic reactions and extraction processes of DNA in DNA sequence analysis.Biotechniques1990;9:584-6, 588

[12]

Mardis ER.Automated methods for single-stranded DNA isolation and dideoxynucleotide DNA sequencing reactions on a robotic workstation.Biotechniques1989;7:840-50

[13]

Adessi C,Ayala G.Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms.Nucleic Acids Res2000;28:E87 PMCID:PMC110803

[14]

Ronaghi M,Nyren P.A sequencing method based on real-time pyrophosphate.Science1998;281:363, 5

[15]

Bragg LM,Butler MK,Tyson GW.Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data.PLoS Comput Biol2013;9:e1003031 PMCID:PMC3623719

[16]

Gharizadeh B,Nourizad N.Methodological improvements of pyrosequencing technology.J Biotechnol2006;124:504-11 PMCID:PMC2933062

[17]

Frey KG,Redden CL.Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood.BMC Genomics2014;15:96 PMCID:PMC3922542

[18]

Payne A,Rakyan V.BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files.Bioinformatics2019;35:2193-8 PMCID:PMC6596899

[19]

Eid J,Gray J.Real-time DNA sequencing from single polymerase molecules.Science2009;323:133-8

[20]

Dohm JC,Stralis-Pavese N.Benchmarking of long-read correction methods.NAR Genom Bioinform2020;2:lqaa037 PMCID:PMC7671305

[21]

Zhang H,Aluru S.A comprehensive evaluation of long read error correction methods.BMC Genomics2020;21:889 PMCID:PMC7751105

[22]

Sahlin K.Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis.Nat Commun2021;12:2 PMCID:PMC7782715

[23]

Leggett RM.A world of opportunities with nanopore sequencing.J Exp Bot2017;68:5419-29

[24]

Riesenfeld CS,Handelsman J.Metagenomics: genomic analysis of microbial communities.Annu Rev Genet2004;38:525-52

[25]

Spang A,Jørgensen SL.Complex archaea that bridge the gap between prokaryotes and eukaryotes.Nature2015;521:173-9 PMCID:PMC4444528

[26]

Brown CT,Thomas BC.Unusual biology across a group comprising more than 15% of domain Bacteria.Nature2015;523:208-11

[27]

Tyson GW,Hugenholtz P.Community structure and metabolism through reconstruction of microbial genomes from the environment.Nature2004;428:37-43

[28]

Pop M.Genome assembly reborn: recent computational challenges.Brief Bioinform2009;10:354-66 PMCID:PMC2691937

[29]

Myers EWJ.A history of DNA sequence assembly.it - Information Technology2016;58:126-32

[30]

Alneberg J,de Bruijn I.Binning metagenomic contigs by coverage and composition.Nat Methods2014;11:1144-6

[31]

Nielsen HB,Juncker AS.MetaHIT Consortium, MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.Nat Biotechnol2014;32:822-8.

[32]

Gregor I,Schirmer M,McHardy AC.PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes.PeerJ2016;4:e1603 PMCID:PMC4748697

[33]

Parks DH,Skennerton CT,Tyson GW.CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes.Genome Res2015;25:1043-55 PMCID:PMC4484387

[34]

Bowers RM,Stepanauskas R.Genome Standards ConsortiumMinimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.Nat Biotechnol2017;35:725-31 PMCID:PMC6436528

[35]

Arumugam K,Haryono MAS.Recovery of complete genomes and non-chromosomal replicons from activated sludge enrichment microbial communities with long read metagenome sequencing.NPJ Biofilms Microbiomes2021;7:23 PMCID:PMC7966762

[36]

Lui LM,Arkin AP.A method for achieving complete microbial genomes and improving bins from metagenomics data.PLoS Comput Biol2021;17:e1008972 PMCID:PMC8172020

[37]

Vollmers J,Kaster AK.Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist's Perspective - Not Only Size Matters!.PLoS One2017;12:e0169662

[38]

Chen LX,Shaiber A,Banfield JF.Accurate and complete genomes from metagenomes.Genome Res2020;30:315-33 PMCID:PMC7111523

[39]

Howe AC,Malfatti SA,Tiedje JM.Tackling soil diversity with the assembly of large, complex metagenomes.Proc Natl Acad Sci U S A2014;111:4904-9 PMCID:PMC3977251

[40]

Nurk S,Korobeynikov A.metaSPAdes: a new versatile metagenomic assembler.Genome Res2017;27:824-34 PMCID:PMC5411777

[41]

Namiki T,Tanaka H.MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads.Nucleic Acids Res2012;40:e155 PMCID:PMC3488206

[42]

Li D,Luo R,Lam TW.MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph.Bioinformatics2015;31:1674-6

[43]

Segerman B.The Most Frequently Used Sequencing Technologies and Assembly Methods in Different Time Segments of the Bacterial Surveillance and RefSeq Genome Databases.Front Cell Infect Microbiol2020;10:527102 PMCID:PMC7604302

[44]

Yang C,Zhang Z.A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data.Comput Struct Biotechnol J2021;19:6301-14 PMCID:PMC8640167

[45]

Ayling M,Leggett RM.New approaches for metagenome assembly with short reads.Brief Bioinform2020;21:584-94 PMCID:PMC7299287

[46]

Anyansi C,Manson AL,Abeel T.Computational Methods for Strain-Level Microbial Detection in Colony and Metagenome Sequencing Data.Front Microbiol2020;11:1925 PMCID:PMC7507117

[47]

Latorre-Pérez A,Pascual J.Assembly methods for nanopore-based metagenomic sequencing: a comparative study.Sci Rep2020;10:13588 PMCID:PMC7423617

[48]

Bertrand D,Kalathiyappan M.Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes.Nat Biotechnol2019;37:937-44

[49]

Moss EL,Bhatt AS.Complete, closed bacterial genomes from microbiomes using nanopore sequencing.Nat Biotechnol2020;38:701-7 PMCID:PMC7283042

[50]

Stepanauskas R,Brown J.Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles.Nat Commun2017;8:84 PMCID:PMC5519541

[51]

Dhorne-Pollet S,Pollet N.A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants.BMC Genomics2020;21:785 PMCID:PMC7661214

[52]

Barrick JE,Yoon SH.Genome evolution and adaptation in a long-term experiment with Escherichia coli.Nature2009;461:1243-7

[53]

Pulido-Tamayo S,Swings T.Frequency-based haplotype reconstruction from deep sequencing data of bacterial populations.Nucleic Acids Res2015;43:e105 PMCID:PMC4652744

[54]

Quince C,Raguideau S.DESMAN: a new tool for de novo extraction of strains from metagenomes.Genome Biol2017;18:181 PMCID:PMC5607848

[55]

Schloissnig S,Sunagawa S.Genomic variation landscape of the human gut microbiome.Nature2013;493:45-50 PMCID:PMC3536929

[56]

Crits-Christoph A,Diamond S,Banfield JF.Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow.ISME J2020;14:1834-46 PMCID:PMC7305173

[57]

Wang Y,Bollas A,Au KF.Nanopore sequencing technology, bioinformatics and applications.Nat Biotechnol2021;39:1348-65

[58]

Boev AS,Usmanov SR.Genome assembly using quantum and quantum-inspired annealing.Sci Rep2021;11:13183 PMCID:PMC8222255

[59]

Alberts GJN,Last T.Accelerating quantum computer developments.EPJ Quantum Technol2021;8

[60]

Cock PJ,Goto N,Rice PM.The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants.Nucleic Acids Res2010;38:1767-71 PMCID:PMC2847217

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/