The Integrated Probiotic Database: a genomic compendium of bifidobacterial health-promoting strains

Chiara Tarracchini , Martina Viglioli , Gabriele Andrea Lugli , Leonardo Mancabelli , Federico Fontana , Giulia Alessandri , Francesca Turroni , Marco Ventura , Christian Milani

Microbiome Research Reports ›› 2022, Vol. 1 ›› Issue (2) : 9

PDF
Microbiome Research Reports ›› 2022, Vol. 1 ›› Issue (2) :9 DOI: 10.20517/mrr.2021.13
Original Article

The Integrated Probiotic Database: a genomic compendium of bifidobacterial health-promoting strains

Author information +
History +
PDF

Abstract

Background: The World Health Organization defines probiotics as “live microorganisms, which when administered in adequate amounts confer a health benefit on the host”. In this framework, probiotic strains should be regarded as safe for human and animal consumption, i.e., they should possess the GRAS (generally recognized as safe) status, notified by the local authorities. Consistently, strains of selected Bifidobacterium species are extensively used as probiotic agents to prevent and ameliorate a broad spectrum of human and/or animal gastrointestinal disorders. Even though probiotic properties are often genus- or species-associated, strain-level differences in the genetic features conferring individual probiotic properties to commercialized bifidobacterial strains have not been investigated in detail.

Methods: In this study, we built a genomic database named Integrated Probiotic DataBase (IPDB), whose first iteration consists of common bifidobacterial strains used in probiotic products for which public genome sequences were available, such as members of B. longum subsp. longum, B. longum subsp. infantis, B. bifidum, B. breve, and B. animalis subsp. lactis taxa. Furthermore, the IPDB was exploited to perform comparative genome analyses focused on genetic factors conferring structural, functional, and chemical features predicted to be involved in microbe-host and microbe-microbe interactions.

Results and conclusion: Our analyses revealed strain-level genetic differences, underlining the importance of inspecting the strain-specific and outcome-specific efficacy of probiotics. In this context, IPDB represents a valuable resource for obtaining genetic information of well-established bifidobacterial probiotic strains.

Keywords

Bifidobacterium / bifidobacterium longum / bifidobacterium infants / bifidobacterium bifidum / bifidobacterium breve / bifidobacterium animalis / genomics

Cite this article

Download citation ▾
Chiara Tarracchini, Martina Viglioli, Gabriele Andrea Lugli, Leonardo Mancabelli, Federico Fontana, Giulia Alessandri, Francesca Turroni, Marco Ventura, Christian Milani. The Integrated Probiotic Database: a genomic compendium of bifidobacterial health-promoting strains. Microbiome Research Reports, 2022, 1(2): 9 DOI:10.20517/mrr.2021.13

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hill C,Reid G.Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat Rev Gastroenterol Hepatol2014;11:506-14

[2]

Aditya A,Young A.Antagonistic mechanism of metabolites produced by lactobacillus casei on lysis of enterohemorrhagic escherichia coli.Front Microbiol2020;11:574422 PMCID:PMC7719638

[3]

Tomasik PJ.Probiotics and prebiotics.Cereal Chemistry2003;80:113-7

[4]

Koutsoumanis K,Alvarez-Ordóñez A.EFSA Panel on Biological Hazards (BIOHAZ)Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 14: suitability of taxonomic units notified to EFSA until March 2021.EFSA J2021;19:e06689 PMCID:PMC8262138

[5]

Scheinbach S.Probiotics: functionality and commercial status.Biotechnology Advances1998;16:581-608

[6]

Papizadeh M,Nahrevanian H,Pourshafie MR.Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends.Microb Pathog2017;111:118-31

[7]

McFarland LV.Efficacy of single-strain probiotics versus multi-strain mixtures: systematic review of strain and disease specificity.Dig Dis Sci2021;66:694-704

[8]

Ouwehand AC,Furlaneto FAC.Effectiveness of multistrain versus single-strain probiotics: current status and recommendations for the future.J Clin Gastroenterol2018;52 Suppl 1:S35-40

[9]

Lugli GA,Mancabelli L,Ventura M.MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation.FEMS Microbiol Lett2016;363:fnw049

[10]

Hyatt D,Locascio PF,Larimer FW.Prodigal: prokaryotic gene recognition and translation initiation site identification.BMC Bioinformatics2010;11:119 PMCID:PMC2848648

[11]

Zhao Y,Ye Y.RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data.Bioinformatics2012;28:125-6 PMCID:PMC3244761

[12]

Lowe TM.tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence.Nucleic Acids Res1997;25:955-64 PMCID:PMC146525

[13]

Lagesen K,Rødland EA,Rognes T.RNAmmer: consistent and rapid annotation of ribosomal RNA genes.Nucleic Acids Res2007;35:3100-8 PMCID:PMC1888812

[14]

Zhao Y,Yang J,Xiao J.PGAP: pan-genomes analysis pipeline.Bioinformatics2012;28:416-8 PMCID:PMC3268234

[15]

Enright AJ,Ouzounis CA.An efficient algorithm for large-scale detection of protein families.Nucleic Acids Res2002;30:1575-84 PMCID:PMC101833

[16]

Huerta-Cepas J,Forslund K.eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences.Nucleic Acids Res2016;44:D286-93 PMCID:PMC4702882

[17]

Jain C,Phillippy AM,Aluru S.High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.Nat Commun2018;9:5114 PMCID:PMC6269478

[18]

Katoh K,Kuma K.MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Nucleic Acids Res2002;30:3059-66 PMCID:PMC135756

[19]

Chenna R,Koike T.Multiple sequence alignment with the Clustal series of programs.Nucleic Acids Res2003;31:3497-500 PMCID:PMC168907

[20]

Lombard V,Drula E,Henrissat B.The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res2014;42:D490-5 PMCID:PMC3965031

[21]

Wheeler TJ.nhmmer: DNA homology search with profile HMMs.Bioinformatics2013;29:2487-9 PMCID:PMC3777106

[22]

Altschul SF,Miller W,Lipman DJ.Basic local alignment search tool.J Mol Biol1990;215:403-10

[23]

Alcock BP,Lau TTY.CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database.Nucleic Acids Res2020;48:D517-25 PMCID:PMC7145624

[24]

Saier MH Jr,Tsu BV,Li C.The Transporter Classification Database (TCDB): recent advances.Nucleic Acids Res2016;44:D372-9 PMCID:PMC4702804

[25]

Ye Y,Tang H.RAPSearch: a fast protein similarity search tool for short reads.BMC Bioinformatics2011;12:159 PMCID:PMC3113943

[26]

Milani C,Mancabelli L.The Sortase-dependent fimbriome of the genus bifidobacterium: extracellular structures with potential to modulate microbe-host dialogue.Appl Environ Microbiol2017;83:e01295-17 PMCID:PMC5601332

[27]

Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins.Nucleic Acids Res2018;46:W278-81 PMCID:PMC6030817

[28]

Chen L,Yu J.VFDB: a reference database for bacterial virulence factors.Nucleic Acids Res2005;33:D325-8 PMCID:PMC539962

[29]

Tarracchini C,Lugli GA.Phylogenomic disentangling of the Bifidobacterium longum subsp. infantis taxon.Microb Genom2021;7000609 PMCID:PMC8477406

[30]

Blanco-Míguez A,Fdez-Riverola F,Sánchez B.A peptidome-based phylogeny pipeline reveals differential peptides at the strain level within Bifidobacterium animalis subsp. lactis.Food Microbiol2016;60:137-41

[31]

Underwood MA,Lebrilla CB.Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut.Pediatr Res2015;77:229-35 PMCID:PMC4350908

[32]

Tan J,Potamitis M,Mackay CR.The role of short-chain fatty acids in health and disease. Elsevier; 2014. p. 91-119.

[33]

Abdelhamid AG.Comparative genomics of the gut commensal Bifidobacterium bifidum reveals adaptation to carbohydrate utilization.Biochem Biophys Res Commun2021;547:155-61

[34]

Sela DA,Lerno L.Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides.Appl Environ Microbiol2012;78:795-803 PMCID:PMC3264123

[35]

Katoh T,Sakanaka M,Gotoh A.Enzymatic adaptation of bifidobacterium bifidum to Host Glycans, viewed from glycoside hydrolyases and carbohydrate-binding modules.Microorganisms2020;8:481 PMCID:PMC7232152

[36]

Sakurama H,Wada J.Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression.J Biol Chem2013;288:25194-206 PMCID:PMC3757183

[37]

Odamaki T,Kato K.Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan.Sci Rep2018;8:85 PMCID:PMC5758520

[38]

Turroni F,Foroni E.Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions.Proc Natl Acad Sci U S A2013;110:11151-6 PMCID:PMC3703987

[39]

Nishiyama K,Sugiyama M,Mukai T.Roles of the cell surface architecture of Bacteroides and Bifidobacterium in the gut colonization.Front Microbiol2021;12:754819 PMCID:PMC8551831

[40]

Alessandri G,Ventura M.The genus bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota running title: bifidobacterial adaptation to and interaction with the host.Comput Struct Biotechnol J2021;19:1472-87 PMCID:PMC7979991

[41]

Martinez FA,Converti A,de Souza Oliveira RP.Bacteriocin production by Bifidobacterium spp. A review.Biotechnol Adv2013;31:482-8

[42]

Niederhäusern S,Sabia C,Bondi M.Antilisterial activity of bacteriocins produced by lactic bacteria isolated from dairy products.Foods2020;9:1757 PMCID:PMC7761453

[43]

Kanmani P,Yuvaraj N,Pattukumar V.Probiotics and its functionally valuable products-a review.Crit Rev Food Sci Nutr2013;53:641-58

[44]

Liévin V,Hudault S.Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity.Gut2000;47:646-52 PMCID:PMC1728100

[45]

O'Shea EF,Stanton C,Hill C.Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid.Int J Food Microbiol2012;152:189-205

[46]

Gama JA,Dionisio F.Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance.Plasmid2018;99:82-8

[47]

Lupski JR.Molecular mechanisms for transposition of drug-resistance genes and other movable genetic elements.Rev Infect Dis1987;9:357-68

[48]

Kiwaki M.Antimicrobial susceptibility of Bifidobacterium breve strains and genetic analysis of streptomycin resistance of probiotic B. breve strain Yakult.Int J Food Microbiol2009;134:211-5

[49]

Sato T.Genetic analyses of the antibiotic resistance of Bifidobacterium bifidum strain Yakult YIT 4007.Int J Food Microbiol2010;137:254-8

[50]

Gueimonde M,G de Los Reyes-Gavilán C.Antibiotic resistance in probiotic bacteria.Front Microbiol2013;4:202 PMCID:PMC3714544

[51]

Franz CM,Abriouel H,Gálvez A.Enterococci as probiotics and their implications in food safety.Int J Food Microbiol2011;151:125-40

[52]

Miller WR,Arias CA.Mechanisms of antibiotic resistance in enterococci.Expert Rev Anti Infect Ther2014;12:1221-36 PMCID:PMC4433168

[53]

Patel R.Enterococcal-type glycopeptide resistance genes in non-enterococcal organisms.FEMS Microbiol Lett2000;185:1-7

[54]

Vescovo M,Bottazzi V.Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri.Appl Environ Microbiol1982;43:50-6 PMCID:PMC241779

[55]

Jarocki P,Glibowski P.A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.PLoS One2014;9:e114379 PMCID:PMC4255033

[56]

Castro-Bravo N,Margolles A.Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment.Front Microbiol2018;9:2426 PMCID:PMC6193118

[57]

Prasanna P,Charalampopoulos D.Bifidobacteria in milk products: an overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits.Food Res Int2014;55:247-62

[58]

Fanning S,Cronin M.Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection.Proc Natl Acad Sci U S A2012;109:2108-13 PMCID:PMC3277520

[59]

Provencher C,Sirois S,Roy D.Consensus-degenerate hybrid oligonucleotide primers for amplification of priming glycosyltransferase genes of the exopolysaccharide locus in strains of the Lactobacillus casei group.Appl Environ Microbiol2003;69:3299-307 PMCID:PMC161484

[60]

Ferrario C,Mancabelli L.Modulation of the eps-ome transcription of bifidobacteria through simulation of human intestinal environment.FEMS Microbiol Ecol2016;92:fiw056

[61]

Yan S,Liu X,Zhang H.Production of exopolysaccharide by Bifidobacterium longum isolated from elderly and infant feces and analysis of priming glycosyltransferase genes.RSC Adv2017;7:31736-44

AI Summary AI Mindmap
PDF

484

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/